Tìm x:
\(\sqrt{2007+2008\sqrt{x^2+x+0,1}}=20+\sqrt{2008-2007\sqrt{x^2+x+0,1}}\)
tính giá trị biểu thức (\(\sqrt{2009}\)-\(\sqrt{2008}\))\(x^2\)- (\(\sqrt{2008}\)-\(\sqrt{2007}\))x +6\(\sqrt{2008}\)-2\(\sqrt{2007}\)
với x = \(\frac{2\sqrt{2009}-3\sqrt{2008}+\sqrt{2007}}{\sqrt{2008}-\sqrt{2009}}\)
\(\sqrt{x-2008}-\left(x^2-2006\right)\sqrt{2008-x}+\dfrac{1}{\sqrt{x-2007}}=1\)
\(ĐK:\left\{{}\begin{matrix}x-2008\ge0\\2008-x\ge0\\x-2007>0\end{matrix}\right.\Leftrightarrow x=2008\)
Vậy PT có nghiệm \(x=2008\)
Tính \(y=\frac{1}{\sqrt{x}+\sqrt{x+1}}+\frac{1}{\sqrt{x+2}-\sqrt{x+1}}+\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+..+\frac{1}{\sqrt{x+2008}+\sqrt{x+2007}}\)với x=\(\sqrt[2007]{2008}\)
Cho C= \(\dfrac{1}{\sqrt{x}+\sqrt{x+1}}+\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}+....+\dfrac{1}{\sqrt{x+2007}+\sqrt{x+2008}}\); với x=\(\sqrt[2007]{2008}\)
Tính C= ?
\(C=\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2007}-\sqrt{x+2008}}{-1}\)
\(=-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{x+2007}+\sqrt{x+2008}\)\(=-\sqrt{x}+\sqrt{x+2008}\)
\(C=-\sqrt{\sqrt[2007]{2008}}+\sqrt{\sqrt[2007]{2008}+2008}\)
\(P(x)=ax^2+bx+c, \ a \ne 0\)
Chứng minh rằng \(\forall m \in \mathbb{R}\) ta có :
\(P(m) = P\left( { - m - \dfrac{b}{a}} \right).\)
Từ đó tính giá trị biểu thức \((\sqrt {2009} - \sqrt {2008} )x^2 - (\sqrt 2 008 - \sqrt {2007} )x + 6\sqrt {2008} - 2\sqrt {2007}\)
với \(x = \dfrac{2 \sqrt{2009}- 3\sqrt{2008}+ \sqrt{2007}}{ \sqrt{2008}- \sqrt{2009}}\)
với cả : P(x) = ax2 + bx +c , a khác 0
Giải phương trình \(\sqrt{2007+2008\sqrt{1-x}}=1+\sqrt{2007-2008\sqrt{1-x}}\)
\(\sqrt{2007+2008\sqrt{1-x}}=1+\sqrt{2007-2008\sqrt{1-x}}\left(x\le1\right)\)
\(\Leftrightarrow2007+2008\sqrt{1-x}=1+2007-2008\sqrt{1-x}+2\sqrt{2007-2008\sqrt{1-x}}\)
\(\Leftrightarrow2.2008\sqrt{1-x}=2\sqrt{2007-2008\sqrt{1-x}}+1\)
Đặt \(2008\sqrt{1-x}=y\ge0\)
Suy ra phương trình (1) tương đương với : \(2y-1=2\sqrt{2007-y}\Leftrightarrow4y^2-4y+1=4\left(2007-y\right)\Leftrightarrow4y^2=8027\Rightarrow y=\frac{\sqrt{8027}}{2}\)(nhận) hoặc \(y=-\frac{\sqrt{8027}}{2}\)(loại)
Từ đó suy ra \(x=\frac{16120229}{16128256}\)
Vậy \(x=\frac{16120229}{16128256}\)là nghiệm của phương trình.
Bài này nếu mình nhớ không nhầm thì nằm trong đề thi Toán Casio đúng không bạn? :))
Tap shitbo vào hộ mình nhé.Mình tap không đc @shitbo :v
1/Evaluate: (in simplest form)
\(\sqrt{2008+2007\sqrt{2008+2007\sqrt{2008+2007\sqrt{...}}}}\)
2/Find the remainder when \(x^{2008}+2008x+2008\) is divided by x + 1
3/ Find the maximum value of \(\sqrt{x-144}+\sqrt{722-x}\)
Trích đề thi "Singapore Mathematical Olympiad (SMO) 2008 (Junior Section) được đăng tải bởi toán tuổi thơ cấp THCS số 65.
Bai;f1:
Đặt: \(x=\text{ }\sqrt{2008+2007\sqrt{2008+2007\sqrt{2008+2007........}}}\)
\(\Rightarrow x^2=2008+2007x\Leftrightarrow x^2-2007x-2008=0\Leftrightarrow\left(x+1\right)\left(x-2008\right)=0\)
\(\text{Mà: x lớn hơn 0 nên}\)\(x-2008=0\Leftrightarrow x=2008\)
Theo AM-GM thì:
\(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)
Áp dụng:
\(\sqrt{x-144}+\sqrt{722-x}\le\sqrt{2\left(x-144+722-x\right)}=\sqrt{588.2}=\sqrt{1176}=34\)
tự tìm dấu "="
Bài 1: Tính giá trị biểu thức: P=\(\sqrt{x+24+7\sqrt{2x-1}}+\sqrt{x+4-3\sqrt{2x-1}}\)
với\(\frac{1}{2}\le x\le5\)
Bài 2: Tính P=\(\sqrt{1+2007^2+\frac{2007^2}{2008^2}}+\frac{2007}{2008}\)
Tìm nghiệm dương của phương trình:
(1+x-\(\sqrt{x^2-1}\) )2007 + (1+x+\(\sqrt{x^2-1}\))2007 = 22008