Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lily
Xem chi tiết
Anna Albright
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 17:13

\(ĐK:\left\{{}\begin{matrix}x-2008\ge0\\2008-x\ge0\\x-2007>0\end{matrix}\right.\Leftrightarrow x=2008\)

Vậy PT có nghiệm \(x=2008\)

Hoàng Ngô Diệu
Xem chi tiết
ph
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 1 2023 lúc 15:12

\(C=\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2007}-\sqrt{x+2008}}{-1}\)

\(=-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{x+2007}+\sqrt{x+2008}\)\(=-\sqrt{x}+\sqrt{x+2008}\)

\(C=-\sqrt{\sqrt[2007]{2008}}+\sqrt{\sqrt[2007]{2008}+2008}\)

✰✰ βєsէ ℱƐƝƝIƘ ✰✰
Xem chi tiết
✰✰ βєsէ ℱƐƝƝIƘ ✰✰
28 tháng 9 2019 lúc 23:11

Sorry thiếu với \(\forall m\inℝ\)

✰✰ βєsէ ℱƐƝƝIƘ ✰✰
28 tháng 9 2019 lúc 23:15

với cả  : P(x) = ax2 + bx +c , a khác 0

Hải Dương
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 6 2016 lúc 16:09

\(\sqrt{2007+2008\sqrt{1-x}}=1+\sqrt{2007-2008\sqrt{1-x}}\left(x\le1\right)\)

\(\Leftrightarrow2007+2008\sqrt{1-x}=1+2007-2008\sqrt{1-x}+2\sqrt{2007-2008\sqrt{1-x}}\)

\(\Leftrightarrow2.2008\sqrt{1-x}=2\sqrt{2007-2008\sqrt{1-x}}+1\)

Đặt \(2008\sqrt{1-x}=y\ge0\)

Suy ra phương trình (1) tương đương với : \(2y-1=2\sqrt{2007-y}\Leftrightarrow4y^2-4y+1=4\left(2007-y\right)\Leftrightarrow4y^2=8027\Rightarrow y=\frac{\sqrt{8027}}{2}\)(nhận) hoặc \(y=-\frac{\sqrt{8027}}{2}\)(loại)

Từ đó suy ra \(x=\frac{16120229}{16128256}\)

Vậy \(x=\frac{16120229}{16128256}\)là nghiệm của phương trình.

Bài này nếu mình nhớ không nhầm thì nằm trong đề thi Toán Casio đúng không bạn? :))

tth_new
Xem chi tiết
shitbo
1 tháng 5 2019 lúc 19:02

Ok a :) e có full 13 đề r :D

shitbo
3 tháng 5 2019 lúc 19:54

Bai;f1:

Đặt: \(x=\text{ }\sqrt{2008+2007\sqrt{2008+2007\sqrt{2008+2007........}}}\)

\(\Rightarrow x^2=2008+2007x\Leftrightarrow x^2-2007x-2008=0\Leftrightarrow\left(x+1\right)\left(x-2008\right)=0\)

\(\text{Mà: x lớn hơn 0 nên}\)\(x-2008=0\Leftrightarrow x=2008\)

shitbo
3 tháng 5 2019 lúc 19:56

Theo AM-GM thì:

\(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)

Áp dụng:

\(\sqrt{x-144}+\sqrt{722-x}\le\sqrt{2\left(x-144+722-x\right)}=\sqrt{588.2}=\sqrt{1176}=34\)

tự tìm dấu "="

Lee Je Yoon
Xem chi tiết
tu kuynh nguyen
Xem chi tiết