Tính nhanh
\(\dfrac{12.48:0.5\times6.25\times4\times2}{2\times3.12\times1.25:0.25\times10}\)
Tính nhanh:\(\frac{12,48:6,48:0,5:0,125\times6,25\times3,25\times4\times4\times2}{2:2\times3,12\times21,6\times1,25\times2,6:0,25:0,25\times10\times10}\)
Lời giải:
Gọi phân số trên là $A$. Ta có:
$A=\frac{12,48:6,48\times 2\times 8\times 6,25\times 3,25\times 4\times 4\times 2}{3,12\times 21,6\times 1,25\times 2,6\times 4\times 4\times 10\times 10}$
$=\frac{12,48:6,48\times (2\times 6,25)\times (8\times 3,25)\times 2}{3,12\times 21,6\times (1,25\times 10)\times (2,6\times 10)}$
$=\frac{12,48:6,48\times 12,5\times 26\times 2}{3,12\times 21,6\times 12,5\times 26}$
$=\frac{12,48:6,48\times 2}{3,12\times 21,6}=\frac{125}{2187}$
Tính nhanh : \(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{9\times10}\)
\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{9\times10}\)
=\(2\times\frac{1}{1\times2}+2\times\frac{1}{2\times3}+2\times\frac{1}{3\times4}+...+2\times\frac{1}{9\times10}\)
=\(2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\right)\)
=\(2\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
=\(2\times\left(\frac{1}{1}-\frac{1}{10}\right)=2\times\left(\frac{10}{10}-\frac{1}{10}\right)=2\times\frac{9}{10}\)
=\(\frac{9}{5}\)
=2-1+1-\(\frac{2}{3}\)+\(\frac{2}{3}\)-\(\frac{1}{2}\)+...+\(\frac{2}{9}\)-\(\frac{1}{5}\)
=2-\(\frac{1}{5}\)
=\(\frac{10}{5}\)-\(\frac{1}{5}\)
=\(\frac{9}{5}\).
**** mình nha mấy bạn.
chứng minh
M=\(\dfrac{3}{1^2\times2^2}+\dfrac{5}{2^2\times3^2}+\dfrac{7}{3^2\times4^2}+.......+\dfrac{19}{9^2\times10^2}< 1\)
\(M=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)
\(M=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)
\(M=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(M=1-\dfrac{1}{10^2}< 1\left(đpcm\right)\)
Tính nhanh :
\(\text{A}=\left(1\times2\right)^{-1}+(2\times3)^{-1}+(3\times4)^{-1}+...+\left(9\times10\right)^{-1}\)
\(\text{A}=\left(1\times2\right)^{-1}+\left(2\times3\right)^{-1}+(3\times4)^{-1}+...+\left(9\times10\right)^{-1}\)
\(\text{A}=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(\text{A}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(\text{A}=1-\frac{1}{10}=\frac{9}{10}\).
Tính nhanh
\(\frac{12,48:0,5\times6,25\times4\times2}{2\times3,12\times1,25\div0,25\times10}\)
\(\frac{12,48:0,5x6,25x4x2}{2x3,12x1,25:0,25x10}=\frac{4x3,12x2x5x1,25x4x2}{2x3,12x1,25x4x2x5}=4\)
12.48/0.5*6.25*4*2
2*3.12*1.25/0.25*10
tinh nhanh số thap than
Tính giá trị biểu thức:
B=\(\dfrac{5}{1\times2}+\dfrac{13}{2\times3}+\dfrac{25}{3\times4}+\dfrac{41}{4\times5}+...+\dfrac{181}{9\times10}\)
\(B=\dfrac{5}{1.2}+\dfrac{13}{2.3}+\dfrac{25}{3.4}+\dfrac{41}{4.5}+...+\dfrac{181}{9.10}\)
\(=\left(\dfrac{1}{1.2}+\dfrac{4}{1.2}\right)+\left(\dfrac{1}{2.3}+\dfrac{12}{2.3}\right)+\left(\dfrac{1}{3.4}+\dfrac{24}{3.4}\right)+...+\left(\dfrac{1}{9.10}+\dfrac{180}{9.10}\right)\)
\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\right)+\left(\dfrac{4}{1.2}+\dfrac{12}{2.3}+...+\dfrac{180}{9.10}\right)\)
\(=\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)+\left(2+2+...+2\right)\)
\(=1-\dfrac{1}{10}+\left(2.9\right)\)
\(=1-\dfrac{1}{10}+18\)
\(=\dfrac{9}{10}+18\)
\(=18\dfrac{9}{10}\)
tính giá trị biểu thức: \(\frac{1\times2\times3}{1\times6\times8}\times\frac{6\times4\times5}{3\times2\times2\times10}\)
= \(\frac{1x1x1}{1x2x4}x\frac{2.2.1}{1.1.2.2}=\frac{1}{8}.1=\frac{1}{8}\)
=1X2X3/1X2X3X4X2= 1/8 =3X2X2X2X5/3X2X2X5X2= 1/1
=1/8X1/1=1/8
Tính giá trị biểu thức:
\(\frac{1\times2\times3}{1\times6\times8}\times\frac{6\times4\times5}{3\times2\times2\times10}\)
\(=\frac{1}{8}\times1=\frac{1}{8}\)
Ủng hộ nha! :)
Tính nhanh:
\(B=\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{97\times100}\)
\(B=\dfrac{1}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{97\cdot100}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{99}{100}=\dfrac{33}{100}\)
\(3\times B=\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+....+\dfrac{3}{97\times100}\)
\(3\times B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
\(3\times B=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(B=\dfrac{33}{100}\)
`#ava`
`B` = `frac{1}{1 × 4}` + `frac{1}{4×7}` + `frac{1}{7×10}` + ....+ `frac{1}{97×100}`
`B` = `(``frac{3}{1 × 4}` + `frac{3}{4×7}` + `frac{3}{7×10}` + ....+ `frac{3}{97×100}`)```×1/3`
`B =` `1-1/4+1/4-1/7+1/7-1/10+....+1/97 -1/100) × 1/3`
`B = (1-1/100) × 1/3`
`B= 1/3×99/100`
`B=33/100`