Tìm x,y,z biết:
2x/3=3y/4=4z/5 và x+y+z=69
Tìm 3 số x,y,z nếu biết x,y,z tỉ lệ thuận với 4,7,10 và 2x + 3y + 4z = 69
`#040911`
Vì `3` số `x; y; z` tỉ lệ thuận với `4:7:10`
\(\Rightarrow \dfrac{x}{4} = \dfrac{y}{7} = \dfrac{z}{10} \)
\(\Rightarrow \dfrac{2x}{8} = \dfrac{3y}{21} = \dfrac{4z}{40} \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{8} = \dfrac{3y}{21} = \dfrac{4z}{40} = \dfrac{2x + 3y + 4z}{8+21+40} = \dfrac{69}{69}=1\)
\(\Rightarrow \dfrac{x}{4} = \dfrac{y}{7} = \dfrac{z}{10} = 1\)
\(\Rightarrow x = 1.4 = 4 \\ y = 1.7 = 7 \\ z = 1.10 = 10\)
Vậy, \(x = 4; y = 7; z = 10.\)
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{2x}{8}=\dfrac{3y}{21}=\dfrac{4z}{40}=\dfrac{69}{8+21+40}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.4=4\\y=1.7=7\\z=1.10=10\end{matrix}\right.\)
Tìm 3 số x,y,z biết:
a)x/2=y/5=z/4 và 2x-3y+z=-112
b)x/2=y/3;y/4=z/5 và 2x+3y-4z=-16
a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{15}=\frac{z}{4}=\frac{2x-3y+z}{4-15+4}=\frac{112}{7}=16\)
\(\frac{x}{2}=16=>x=32\)
\(\frac{y}{5}=16=>x=80\)
\(\frac{z}{4}=16=>z=64\)
Câu b) tương tự chỉ cần thay số vào nha bạn
tìm x;y;z : Biết 2x/3=3y/4=4z/5 và x+y+z=49
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{12\left(x+y+z\right)}{49}=\frac{12.49}{49}=12\)
suy ra :
\(\frac{2x}{3}=12\Rightarrow2x=36\Rightarrow x=18\)
\(\frac{3y}{4}=12\Rightarrow3y=48\Rightarrow y=16\)
\(\frac{4z}{5}=12\Rightarrow4z=60\Rightarrow z=15\)
tìm x,y,z biết :
a) x-1/2=y-2/3=z-3/4 và 2x+3y-z=50
b) 2x/3=3y/4=4z/5 và x+y+z=49
c) x/2=y/3=z5 và x*y*z = 810
tìm x,y,z biết x(3-1)=2(y+2);4(y+2)=5(z-3) và 2x+3y-4z=205
Sửa đề: 3(x-1)=2(y+2)
Ta có: 3(x-1)=2(y+2)
\(\Leftrightarrow6\left(x-1\right)=4\left(y+2\right)\)
mà 4(y+2)=5(z-3)
nên \(6\left(x-1\right)=4\left(y+2\right)=5\left(z-3\right)\)
\(\Leftrightarrow\dfrac{x-1}{\dfrac{1}{6}}=\dfrac{y+2}{\dfrac{1}{4}}=\dfrac{z-3}{\dfrac{1}{5}}\)
\(\Leftrightarrow\dfrac{2x-2}{\dfrac{1}{3}}=\dfrac{3y+6}{\dfrac{3}{4}}=\dfrac{4z-12}{\dfrac{4}{5}}\)
mà 2x+3y-4z=205
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{\dfrac{1}{3}}=\dfrac{3y+6}{\dfrac{3}{4}}=\dfrac{4z-12}{\dfrac{4}{5}}=\dfrac{2x-2+3y+6-4z+12}{\dfrac{1}{3}+\dfrac{3}{4}-\dfrac{4}{5}}=\dfrac{205+16}{\dfrac{17}{60}}=780\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x-2}{\dfrac{1}{3}}=780\\\dfrac{3y+6}{\dfrac{3}{4}}=780\\\dfrac{4z-12}{\dfrac{4}{5}}=780\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-2=260\\3y+6=585\\4z-12=624\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=262\\3y=579\\4z=636\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=131\\y=193\\z=159\end{matrix}\right.\)
Vậy: (x,y,z)=(131;193;159)
Tìm các số x, y, x biết rằng :
a) 3x = 2y, 7y = 5z, x - y + z = 32
b) x/3 = y/4, y/2 = x/5, 2x -3y + z = 6
c) 2x/3 = 3y/4 = 4z/5 và x + y + z = 49
d) x - 1/2 = y - 2/3 = z - 3/4 và 2x + 3y - z =50
e) x/2 = y/3 = z/5 và xyz = 810
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
Tìm x,y,z biết
a, x-1/2=y-2/3= z-3/4 và 2x+3y-z =50
b, 2x/3=3y/4=4z/5 và x+y+z=49
Bài giải
a, Ta có :
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-8}{9}=\frac{45}{9}=5\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}x=5\cdot2+1=11\\y=5\cdot3+2=17\\z=5\cdot4+3=23\end{cases}}\)
b, Ta có :
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=49\cdot\frac{12}{49}=12\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\text{ }\hept{\begin{cases}x=12\cdot3\text{ : }2=18\\y=12\cdot4\text{ : }3=16\\z=12\cdot5\text{ : }4=15\end{cases}}\)
tìm các số x,y,z biết; 2x\3=3y\4=4z\5 và x+y+z=49
2x\3=3y\4=4z\5
=>12x/18=12y/16=12z/15
áp dụng tính chất của dãy tỉ số bẳng nhau ta có:
12x/18=12y/16=12z/15=12x+12y+12z/18+16+15=12(x+y+z)/49=12.49/49=12
suy ra 12x/18=12=>12x=216=>x=12
12y/16=12=>12y=192=>y=16
12z/15=12=>12z=180=>z=15
d)đặt x-1/2=y-2/3=z-3/4=k
=>x=2k+1
y=3k+2
z=4k+3
thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3x-z=50 ta được:
2(2k+1)+3(3k+2)-(4k+3)=50
4k+2+9k+6-4k-3=50
9k+5=50
9k=45
k=5
=>x=2k+1=2.5+1=11
y=3k+2=3.5+2=17
z=4k+3=4.5+3=23
2x/3 = 3y/4 = 4z/5
=>12x/18=12y/16=12z/15
áp dụng tính chất của dãy tỉ số = nhau ta có:
12x/18=12y/16=12z/15=12x+12y+12z/18+16+15=12(x+y+z)/49=49/49=12
suy ra
12x/18=12=>12x=216=>x=18
12y/16=12=>12y=192=>y=16
12z/15=12=>12z=180=>z=15
tìm x, y, z biết:
2x/3 =3y/4 =4z/5 và x + y + z = 49