Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thủy Vân
Xem chi tiết
phung van hoang tu
11 tháng 6 2017 lúc 14:29

ko biet vi chua hoc den lop 8

hanari lucy
11 tháng 6 2017 lúc 14:50

tôi chịu tôi chưa học lớp 8 nên tôi ko biết

Haruko
11 tháng 6 2017 lúc 14:57

bó tay . com .vn vì mình chưa học lớp 8 ^-^

Bùi Thị Phương Vy
Xem chi tiết
Hoàng Nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 20:21

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Pose Black
Xem chi tiết
Gia Huy
19 tháng 6 2023 lúc 21:50

a)

Có 2 trung tuyến BN, CM cắt nhau suy ra \(BN\perp AM\)

Gọi G là trọng tâm tam giác ABC, ta có \(BG=\dfrac{2}{3}BN=\dfrac{2}{3}.4=\dfrac{8}{3}\left(cm\right)\)

Trong tam giác ABN vuông tại A, đường cao AG, ta có:

\(AB^2=BG.BN\) (hệ thức lượng)

\(\Rightarrow AB=\sqrt{\dfrac{8}{3}.4}=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)

Tam giác ABN vuông tại A

\(\Rightarrow AN^2=BN^2-AB^2\\ \Rightarrow AN=\sqrt{4^2-\left(\dfrac{4\sqrt{6}}{3}\right)^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)

Mà N là trung điểm AC => AC = \(\dfrac{8\sqrt{3}}{3}\left(cm\right)\)

Áp dụng đl pytago vào tam giác ABC: 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{4\sqrt{6}}{3}\right)^2+\left(\dfrac{8\sqrt{3}}{3}\right)^2}=4\sqrt{2}\left(cm\right)\)

Thừa dữ kiện AM = 3cm, bạn coi kỹ đề đủ/ đúng hết chưa thì cmt để chút mình coi lại bài giải

Nguyễn Thị Huyền Anh
Xem chi tiết
Mitt
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 22:37

AG=10/3(cm)

Vyyyyyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 22:09

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-37^0=53^0\)

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB=BC/2

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)

\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)

\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)

Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)

c: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AFE}=\widehat{AHE}\)

mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AFE}=\widehat{ABC}\)

\(\widehat{AFE}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>FE vuông góc AM tại K

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(HA^2=AE\cdot AB\)

=>\(AE\cdot6=4,8^2\)

=>\(AE=3,84\left(cm\right)\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)

Xét ΔAEF vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)

=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)

=>AK=2,304(cm)

nguyen thi thu hoai
Xem chi tiết
Đỗ Nguyễn Hoàng Lê
Xem chi tiết
Trí Tiên
31 tháng 8 2020 lúc 8:44

A B C M N G

A) 

Nhắc lại: -Trong 1 tam giác vuông bất kỳ, đường trung tuyến ứng với cạnh huyền của tam giác sẽ có độ dài bằng 1/2 cạnh huyền

Xét \(\Delta ABC\)vuông tại A

Có AM là trung tuyến 

=> \(AM=\frac{1}{2}BC\left(đpcm\right)\)

b) Xét \(\Delta ABC\)vuông tại A

\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)

\(\Leftrightarrow BC^2=6^2+8^2\Leftrightarrow BC^2=100\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

Vì \(AM=\frac{1}{2}BC\)

\(\Leftrightarrow AM=\frac{1}{2}.100\Leftrightarrow AM=50\left(cm\right)\)

Ta có hai đường trung tuyến Am và BN cắt nhau tại G 

=> G là trọng tâm tam giác ABC 

\(\Rightarrow AG=\frac{2}{3}AM\)

\(\Leftrightarrow AG=\frac{2}{3}.50\Leftrightarrow AG\approx33,3\left(cm\right)\)

mình làm tiếp trang khác

Khách vãng lai đã xóa
Ngô Huy Khoa
31 tháng 8 2020 lúc 10:14

a) Xét \(\text{∆}ABC\)vuông tại A

Vì AM là đường trung tuyến từ đỉnh A đến trung điểm cạnh huyền BC

=> \(AM=\frac{1}{2}BC\)(theo tính chất đường trung tuyến trong tam giác vuông) (đpcm)

b) Tính cạnh GA

Xét \(\text{∆}ABC\)vuông tại A

Theo định lí PYTAGO, ta có:

\(BC^2=AC^2+AB^2\)

\(BC^2=6^2+8^2\)

\(BC^2=36+64\)

\(BC^2=100\)

\(BC=\sqrt{100}=10\left(cm\right)\)

Mà \(AM=\frac{1}{2}BC\)nên:

\(AM=\frac{1}{2}BC=\frac{1}{2}.10=5\left(cm\right)\)

Vì BN và AM là hai đường trung tuyến nên G là trọng tâm của \(\Delta ABC\)

Ta có: \(GA=\frac{2}{3}AM\)nên:

\(GA=\frac{2}{3}AM=\frac{2}{3}.5\approx3,3\left(cm\right)\)

Tính cạnh GB:

Xét \(\text{∆}ABC\)vuông tại A, ta có:

BN là đường trung tuyến của \(\text{∆}ABC\)nên:

\(CN=NA\)

=> \(NA=\frac{1}{2}AC=\frac{1}{2}.4=2\left(cm\right)\)

Xét \(\text{∆}ANB\)vuông tại A

Theo định lý PYTAGO, ta có:

\(BN^2=NA^2+AB^2\)

\(BN^2=2^2+6^2\)

\(BN^2=4+36\)

\(BN^2=40\)

\(BN=\sqrt{40}\approx6,3\left(cm\right)\)

Ta lại có:

\(GB=\frac{2}{3}BN=\frac{2}{3}.6,3=4,2\left(cm\right)\)

Tính cạnh GC:

Trong \(\text{∆}ABC\), vẽ đường trung tuyến từ C xuống trung điểm của AB, gọi D là trung điểm của cạnh AB

Vì CD là đường trung tuyến của \(\text{∆}ABC\)nên:

\(AD=DB\)

=> \(AD=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)
Xét \(\text{∆}CAD\)vuông tại A

Theo định lí PYTAGO, ta có:

\(CD^2=AC^2+AD^2\)

\(CD^2=8^2+3^2\)

\(CD^2=64+9\)

\(CD^2=73\)

\(CD=\sqrt{73}=8,5\left(cm\right)\)

Ta lại có:

\(GC=\frac{2}{3}CD=\frac{2}{3}.8,5\approx5,7\left(cm\right)\)

Khách vãng lai đã xóa
nguyễn ngọc bình
2 tháng 12 2020 lúc 13:53

em học lớp 6

Khách vãng lai đã xóa
Đậu Hoàng Chương
Xem chi tiết
Nguyễn Ngọc Anh Minh
3 tháng 5 2022 lúc 7:39

a/

\(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\) (Pitago)

b/

Ta có

\(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5cm\) (Trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.\dfrac{5}{2}=\dfrac{5}{3}cm\)  (trong tg 3 đường trung tuyến đồng quy tại 1 điểm và điểm đó cách đỉnh 1 khoảng bằng 2/3 độ dài đường trung tuyến mà trung tuyến đó đi qua)

c/

Xét tg ABN và tg CDN có

AN=CN (gt); BN=DN (gt)

\(\widehat{ANB}=\widehat{CND}\) (Góc đối đỉnh)

=> tg ABN=tg CDN (c.g.c)=> \(\widehat{BAN}=\widehat{DCN}=90^o\Rightarrow CD\perp AC\)