Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Dương Yang Yang
Xem chi tiết
Tiếng anh123456
Xem chi tiết
HT.Phong (9A5)
11 tháng 8 2023 lúc 10:57

a) \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\right)\)

\(P=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(P=\left(\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)

\(P=\dfrac{1}{\sqrt{x}-1}\)

b) P = \(\dfrac{1}{2}\) khi:

\(\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\)

\(\Rightarrow2=\sqrt{x}-1\)

\(\Rightarrow\sqrt{x}=3\)

\(\Rightarrow x=9\left(tm\right)\)

Nguyễn Lê Phước Thịnh
11 tháng 8 2023 lúc 10:51

a: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{1}{\sqrt{x}-1}\)

b: P=1/2

=>căn x-1=2

=>căn x=3

=>x=9

Thảo Nguyên 2k11
11 tháng 8 2023 lúc 11:35

a) Để rút gọn biểu thức P, ta thực hiện các bước sau: P = [(1/(x-√x)) + (√x/(x-1))] : [(x√x-1)/(x√x-√x)] Đầu tiên, ta nhân tử và mẫu của phân số bên trái với (x-√x) để loại bỏ mẫu phân số trong dấu ngoặc: P = [(1/(x-√x)) * (x-√x) + (√x/(x-1)) * (x-√x)] : [(x√x-1)/(x√x-√x)] P = [1 + (√x * (x-√x))/(x-1)] : [(x√x-1)/(x√x-√x)] Tiếp theo, ta nhân tử và mẫu của phân số bên phải với (x√x+√x) để loại bỏ mẫu phân số trong dấu ngoặc: P = [1 + (√x * (x-√x))/(x-1)] * [(x√x+√x)/(x√x+√x)] : [(x√x-1)/(x√x-√x)] P = [(x√x+√x + √x * (x-√x))/(x-1)] * [(x√x+√x)/(x√x-1)] P = [(x√x+√x + √x * (x-√x)) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x√x+√x + √x * (x-√x)) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x + x - x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^3 + 3x√x + 2x)] / [(x-1) * (x√x-1)] P = (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1) Vậy biểu thức P sau khi rút gọn là (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1). b) Để tìm x để P = 1/2, ta giải phương trình: (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1) = 1/2 Nhân cả hai vế của phương trình với (x^2√x - x√x - x + 1) để loại bỏ mẫu phân số: 2(x^3 + 3x√x + 2x) = x^2√x - x√x - x + 1 2x^3 + 6x√x + 4x = x^2√x - x√x - x + 1 2x^3 + 6x√x + 4x - x^2√x + x√x + x - 1 = 0 2x^3 + 5x√x + 5x - x^2√x - 1 = 0 Đây là phương trình không thể giải bằng phép tính đơn giản. Ta có thể sử dụng phương pháp số học hoặc phương pháp đồ thị để tìm nghiệm của phương trình này.

Tran Hieupro
Xem chi tiết
Tran Hieupro
12 tháng 7 2016 lúc 17:47

A>0 chứ ko phải x>0

WitherMaster VNTM
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2022 lúc 21:46

a: \(P=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)

\(=\dfrac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-x-4\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-x-4\sqrt{x}-6-2x+12\sqrt{x}-18}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-3x+8\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}=\dfrac{x+8}{\sqrt{x}+1}\)

b:Đề sai rồi bạn

Vì 14-6 căn 15<0 nên x này vô nghĩa nha bạn

Nguyễn Hồng Anh
Xem chi tiết
Vo Thi Ha Tram
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 19:33

a: \(M=\dfrac{x+4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

Trương Việt Anh
Xem chi tiết
Nguyễn Huy Tú
23 tháng 8 2017 lúc 10:00

\(x-2\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

 Mashiro Shiina
23 tháng 8 2017 lúc 12:38

\(x-2\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Nguyễn Huy Tú
23 tháng 8 2017 lúc 9:52

\(x-2\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)

Hanh
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 11:39

\(\Leftrightarrow2\sqrt{x}-1>0\left(8>0;2\sqrt{x}-1\ne0\right)\\ \Leftrightarrow x>\dfrac{1}{4}\)

meomeo
Xem chi tiết
An Thy
11 tháng 7 2021 lúc 16:05

\(M=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{x-9}=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}-3+\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{2\sqrt{x}+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2}{\sqrt{x}-3}\)

Để M là số tự nhiên \(\Rightarrow\left\{{}\begin{matrix}2⋮\sqrt{x}-3\\\sqrt{x}-3>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-3\in\left\{2;1;-1;-2\right\}\\x>9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{25;16;4;1\right\}\\x>9\end{matrix}\right.\Rightarrow x\in\left\{25;16\right\}\)

Thế vào M,ta đường \(\left\{{}\begin{matrix}x=25\Rightarrow M=1\\x=16\Rightarrow M=2\end{matrix}\right.\)

\(\Rightarrow M\) có giá trị là số tự nhiên lớn nhất là \(2\) khi \(x=16\)