tìm x:
(x+8)^2=121
x^2+8x+16=0
4x^2-12x=-9
Bài 1: Phân tích nhân tử
a. 16a^2 - 49( b - c)^2
b. (ax + by)^2 - (ax - by)^2
c. a^6 - 1
d. a^8 - b^8
Bài 2:Tìm x biết
a. (x - 4)^2 - 36 =0
b. (x + 8)^2 = 121
c. x^2 + 8x +16 =0
d. 4x^2 - 12x = -9
a. 16a2 - 49.( b - c )2
= ( 4a )2 - 72.( b - c )2
= ( 4a )2 - [ 7.( b - c ) ]2
= ( 4a )2 - ( 7b - 7c )2
= ( 4a - 7b + 7c ).( 4a + 7b - 7c )
b. ( ax + by )2 - ( ax - by )2
=( ax + by + ax - by ).( ax + by - ax + by )
= 2ax . 2by
= 2.( ax + by )
c.a6 - 1
= ( a3 )2 - 1
= ( a3 - 1 ).( a3 + 1 )
= ( a - 1 ).( a2 + a + 1 ).( a + 1 ).( a2 - a + 1 )
d. a8 - b8
= ( a4 )2 - ( b4 )2
= ( a4 - b4 ).( a4 + b4 )
= [ ( a2 )2 - ( b2 )2 ].( a4 + b4 )
= ( a2 - b2 ).( a2 + b2 ).( a4 + b4 )
= ( a - b ).( a + b ).( a2 + b2 ).( a4 + b4 )
B2
( x - 4 )2 - 36 = 0
\(\Leftrightarrow\) ( x - 4 )2 = 36
\(\Leftrightarrow\) ( x - 4 )2 = 62
\(\Leftrightarrow\) x + 4 = \(\pm\) 6
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+4=6\\x+4=-6\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)
Vậy x = 10 , x = -2
b. ( x - 8 )2 = 121
\(\Leftrightarrow\) ( x - 8 )2 = 112
\(\Leftrightarrow\) x - 8 = \(\pm\)11
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-8=11\\x-8=-11\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=19\\x=-3\end{cases}}\)
Vậy x = 19 , x = -3
c. x2 + 8x + 16 = 0
\(\Leftrightarrow\)x2 + 2.4x + 42 = 0
\(\Leftrightarrow\) ( x + 4 )2 = 0
\(\Leftrightarrow\) x + 4 = 0
\(\Leftrightarrow\) x = -4
Vậy x = -4
d. 4x2 - 12x = - 9
\(\Leftrightarrow\)( 2x )2 - 2.2.x.3 + 32 = 0
\(\Leftrightarrow\) ( 2x - 3 )2 = 0
\(\Leftrightarrow\) 2x - 3 = 0
\(\Leftrightarrow\) 2x = 3
\(\Leftrightarrow\) \(x=\frac{3}{2}\)
Vậy x = \(\frac{3}{2}\)
Tìm x biết
a) \(\left(x-4\right)^2-36=0\)
b)\(\left(x+8\right)^2=121\)
c)\(x^2+8x+16=0\)
d)\(4x^2-12x+9=0\)
GIÚP MK VS MK ĐG CẦN GẤP AI NHANH MK TICK CHO
a/ \(\left(x-4\right)^2-36=0\)
<=> \(\left(x-4-6\right)\left(x-4+6\right)=0\)
<=> \(\left(x-10\right)\left(x+2\right)=0\)
<=> \(\orbr{\begin{cases}x-10=0\\x+2=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)
b/ \(\left(x+8\right)^2=121\)
<=> \(\left(x+8\right)^2-121=0\)
<=> \(\left(x+8-11\right)\left(x+8+11\right)=0\)
<=> \(\left(x-3\right)\left(x+19\right)=0\)
<=> \(\orbr{\begin{cases}x-3=0\\x+19=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=3\\x=-19\end{cases}}\)
d/ \(4x^2-12x+9=0\)
<=> \(\left(2x\right)^2-2.2x.3+3^2=0\)
<=> \(\left(2x-3\right)^2=0\)
<=> \(2x-3=0\)
<=> \(x=\frac{3}{2}\)
\(c,x^2+8x+16=0\)
\(\Rightarrow x^2+4x+4x+16=0\)
\(\Rightarrow x.\left(x+4\right)+4.\left(x+4\right)=0\)
\(\Rightarrow\left(x+4\right)^2=0\)
\(\Rightarrow x=-4\)
\(d,4x^2-12x+9=0\)
\(4x^2-6x-6x+9=0\)
\(\Rightarrow\left(2.2x^2-2.3x\right)-\left(3.2x-3^2\right)=0\)
\(\Rightarrow2.\left(2x^2-3x\right)-3.\left(2x-3\right)=0\)
\(\Rightarrow2x.\left(2x-3\right)-3.\left(2x-3\right)=0\)
\(\Rightarrow\left(2x-3\right)^2=0\)
\(\Rightarrow2x-3=0\Rightarrow x=1,5\)
Hai phần đầu dễ bãn tự làm
Bài 1:Tìm x
a) (x-4)^2 - 36 = 0
b) ( x-8)^2 = 121
c)x^2 + 8x + 16 = 0
d) 4x^2 - 12x = -9
Bài 2: Tính nhanh
a) 75^2 - 25^2
b) 53^2 - 47^2
Bài1:
\(â,\left(x-4\right)^2-36=0\\ \Leftrightarrow\left(x-4\right)^2=36\\ \Leftrightarrow x-4\in\left\{-6;6\right\}\\ \Leftrightarrow x\in\left\{-2;10\right\}\)
Vậy...
b<Tương tự
c,\(x^2+8x+16=0\\ \Leftrightarrow\left(x+4\right)^2=0\\ \Leftrightarrow x+4=0\\ \Leftrightarrow x=-4\)
Vậy...
d,Tương tự
Bài2:
\(a,75^2-25^2\\ =\left(75-25\right)\left(75+25\right)\\ =100.50=5000\)
\(b,53^2-47^2\\ =\left(53-47\right)\left(53+47\right)\\ =6.100=600\)
Bài 1:
a) (x-4)^2 - 36 = 0
=> (x-4)^2 = 36
=> (x-4)^2 = 6^2
=> x-4 = 6
=>x = 2
b) (x-8)^2 = 121
=> (x-8)^2 = 11^2
=> x-8 = 11
=> x = 19
c) x^2 + 8x +16 = 0
=> x( x +8) = -16
=> x = -4
d) 4x^2 - 12x = -9( Mk chưa nghĩ ra !)
Bài 2 :
a) 75^2 - 25^2
= (75-25)(75+25)
=50.100
=5000
b) 53^2 - 47^2
= (53-47)(53+47)
=6.100
=600
Tìm x
a,(x+4)^2-1=0
b,(2x-3)^2=100
c,x^2+8x+16=0
d,4x^2-12x=-9
a.x = -3
b.\(\frac{13}{2}\)
c. (x+4)2
d. không bik
Bài làm:
a) \(\left(x+4\right)^2-1=0\)
\(\Leftrightarrow\left(x+4\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=1\\x+4=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}\)
b) \(\left(2x-3\right)^2=100\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=10\\2x-3=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=13\\2x=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{2}\\x=-\frac{7}{2}\end{cases}}\)
c) \(x^2+8x+16=0\)
\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Rightarrow x+4=0\)
\(\Rightarrow x=-4\)
d) \(4x^2-12x=-9\)
\(\Leftrightarrow4x^2-12x+9=0\)
\(\Leftrightarrow\left(2x-3\right)^2=0\)
\(\Rightarrow2x-3=0\)
\(\Rightarrow x=\frac{3}{2}\)
a)\(\left(x+4\right)^2-1=0\Leftrightarrow\left(x+4\right)^2=1\)
\(\Leftrightarrow\left(x+4\right)^2=1^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=1\\x+4=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}\)
b) \(\left(2x-3\right)^2=100\)
\(\Leftrightarrow\left(2x-3\right)^2=10^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=10\\2x-3=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=13\\2x=-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{13}{2}\\x=-\frac{7}{2}\end{cases}}\)
c) \(x^2+8x+16=0\)
\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
d) \(4x^2-12x=-9\)
\(\Leftrightarrow4x^2-12x+9=0\)
\(\Leftrightarrow\left(2x-3\right)^2=0\)
\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
1. tìm x
a) (x-4)^2 - 36=0
b) (x+8))^2=121
c) x^2 + 8x + 16=0
d) 4x^2 - 12x= -9
2 .CMR với mọi số nguyên n thì
a) (n+2)^2 - (n-2)^2 chia hết cho 8
b) (n+7)^2 - (n-5)^2 chia hết cho 24
MONG CÁC BẠN GIÚP NHANH CHO MK ĐỂ KỊP NỘP BÀI CHÂN THÀNH CẢM ƠN ^.^
Bài 1 :
\(a,\)\(\left(x-4\right)^2-36=0\)\(\Rightarrow\left(x-4-6\right)\left(x-4+6\right)=0\)
\(\Rightarrow\left(x-10\right)\left(x-2\right)=0\)\(\Rightarrow x\in\left\{10;2\right\}\)
\(b,\)\(\left(x+8\right)^2=121\)\(\Rightarrow\left(x+8\right)^2-11^2=0\)
\(\Rightarrow\left(x+8+11\right)\left(x+8-11\right)=0\)\(\Rightarrow\left(x+19\right)\left(x-3\right)=0\)\(\Rightarrow x\in\left\{-19;3\right\}\)
\(c,x^2+8x+16=0\)\(\Rightarrow\left(x+4\right)^2=0\)
\(\Rightarrow x+4=0\)\(\Leftrightarrow x=-4\)
\(d,4x^2-12x=-9\)\(\Rightarrow4x^2-12x+9=0\)
\(\Rightarrow\left(2x-3\right)^2=0\)\(\Rightarrow2x-3=0\)\(\Rightarrow x=\frac{3}{2}\)
Bài 1 a) (x-4)^2 -36=0
=> (x-4)^2 = 36
=> x-4 = 6
=> x= 10
b) (x+8)^2 = 121
=> x+8 = 11
=> x=3
c) x^2 + 8x +16=0
=> (x+4)^2 =0
=> x+ 4 =0 => x= -4
d) 4x^2 - 12x= -9
=> 4x^2 -12x+9=0
=> ( 2x-3)^2=0
=> 2x-3 =0
=> x= 3/2
Bài 1)
a) (x+4)2 - 36 =0
(x+4)^2 - 6^2 =0
=> (x+2)(x-10) =0 (sử dụng hằng đẳng thức)
=> x =-2 ; x= 10(tự xét)
b) (x+8)^2 =121
(x+8)^2 - 121 =0
(x+8)^2 - 11^2 = 0
=> (x+19)(x-3) = 0
=> x= -19 ; x =3
c) x^2 + 8x + 16 =0
x^2 + 8x + 4^2 = 0
=> (x+4)^2 =0
=> x = -4
d) 4x^2 -12x =-9
(2x)^2 - 12x -9 = 0(chuyển vế)
=> (2x)^2 -12x -(3)^2=0
= (2x-3)^2 =0
=> x = 1,5
Bài 2:
a) (n+2)^2 - ( n-2)^2 = ( n +2+n-2)(n + 2 -n+2)
=> 2n * 4 = 8n : 8 với mọi n
b) (n+7)^2 - ( n-5)^2 = (n+7+n-5)(n+7-n+5)
= (2n +2)*12 = 24(n+1) : 24 với mọi x
Tìm giá trị lớn nhất của biểu thức:
a) \(A=\frac{8x^2-1}{4x^2+1}+12\)
b) \(B=\left(\frac{x^3+8}{x^3-8}.\frac{4x^2+8x+16}{x^2-4}-\frac{4x}{x-2}\right):\frac{-16}{x^4-6x^3+12x^2-8x}\)
a) Theo mình thì chỉ min thôi nhé!
\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)
b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(
Tìm max A = \(\dfrac{x^3+8}{x^3-8}.\dfrac{4x^2+8x+16}{x^2-4}-\dfrac{4x}{x-2}:\left(\dfrac{-16}{x^4-6x^3+12x^2-8x}\right)\)
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
bài 1:tìm giá trị nhỏ nhất của biểu thức :P=\({ x^2 \over x+4 }.({ x^2+16 \over x }+8)+9\)
bài 2:tìm giá trị lớn nhất của biểu thức :\(({ x^3+8 \over x^3-8 }.{ 4x^2+8x+16 \over x^2-4}-{4x\over x-2}):{ -16 \over x^4-6x^3+12x^2-8x }\)
ĐKXĐ; ...
a/ \(P=\frac{x^2}{x+4}\left[\frac{\left(x+4\right)^2}{x}\right]+9=x\left(x+4\right)+9=\left(x+2\right)^2+5\ge5\)
\(P_{min}=5\) khi \(x=-2\)
b/ \(Q=\left(\frac{\left(x+2\right)\left(x^2-2x+4\right).4\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)\left(x-2\right)\left(x+2\right)}-\frac{4x}{x-2}\right).\frac{x\left(x-2\right)^3}{-16}\)
\(=\left(\frac{4\left(x^2-2x+4\right)-4x\left(x-2\right)}{\left(x-2\right)^2}\right).\frac{-x\left(x-2\right)^3}{16}\)
\(=\frac{16}{\left(x-2\right)^2}.\frac{-x\left(x-2\right)^3}{16}=-x\left(x-2\right)=-x^2+2x\)
\(=1-\left(x-1\right)^2\le1\)
\(Q_{max}=1\) khi \(x=1\)