cho cos2a= \(\dfrac{3}{5}\). tính giá trị sin4a - cos4a
Sin4a/1+cos4a + cos2a/1+cos2a = tana
Sin4a/1+cos4a + cos2a/1+cos2a = tana
Đề sai, nói mấy lần rồi bạn ko tin nhỉ? Bạn cho thử a một góc nào đó rồi bấm xem vế trái và vế phải có bằng nhau không?
bài 3 Rút gọn các biểu thức sau
a) A= sin4a - cos4a +2sin2a . cos2a
$\sin^4 a-cos^4 a+2\sin^2 a.\cos^2 a\\=(\sin^4 a-\cos^4 a)+2\sin^2 a.\cos^2 a\\=(\sin^2 a+\cos^2 a)(\sin^2-\cos ^2 )+2\sin^2 a.\cos^2 a\\=\sin^2 a-\cos^2 a+2\sin^2 a.\cos^2 a$
Rút gọn
\(A=\left(\frac{1}{cos2x}+1\right).tanx\)
\(B=\frac{1+sin4a-cos4a}{1+sin4a+cos4a}\)
\(C=\frac{sin2a+sina}{1+cos2a+cosa}\)
\(A=\frac{\left(1+cos2x\right)}{cos2x}.tanx=\frac{\left(1+2cos^2x-1\right)}{cos2x}.\frac{sinx}{cosx}=\frac{2cos^2x.sinx}{cos2x.cosx}=\frac{2sinx.cosx}{cos2x}=\frac{sin2x}{cos2x}=tan2x\)
\(B=\frac{1+2sin2a.cos2a-1+2sin^22a}{1+2sin2a.cos2a+2cos^22a-1}=\frac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\frac{sin2a}{cos2a}=tan2a\)
\(C=\frac{2sina.cosa+sina}{1+2cos^2a-1+cosa}=\frac{sina\left(2cosa+1\right)}{cosa\left(2cosa+1\right)}=\frac{sina}{cosa}=tana\)
Biết sina+ cosa = a 2 . Hỏi giá trị của sin4a + cos4a bằng bao nhiêu?
A. 1
B. 0,5
C. -1
D. 0
Chọn B.
Ta có:
Nên (sina + cosa)2 =2 hay sin2a + cos2a + 2 sina.cosa = 2
Suy ra sina.cosa = ½.
Khi đó: sin4a + cos4a = (sin2a + cos2a)2 - 2sin2a.cos2a = 1 - 2.(1/2)2 = ½.
Rút gọn các biểu thức sau :
a)\(\dfrac{1+\sin4a-\cos4a}{1+\cos4a+\sin4a}\)
b) \(\dfrac{1+\cos a}{1-\cos a}\tan^2\dfrac{a}{2}-\cos^2a\)
c) \(\dfrac{\cos2x-\sin4x-\cos6x}{\cos2x+\sin4x-\cos6x}\)
Chứng minh các hệ thức sau :
a) \(\sin\alpha+\sin\left(\alpha+\dfrac{14}{3}\pi\right)+\sin\left(\alpha-\dfrac{8}{3}\pi\right)=0\)
b) \(\dfrac{\sin4a}{1+\cos4a}.\dfrac{\cos2a}{1+\cos2a}=\cot\left(\dfrac{3}{2}\pi-a\right)\)
c) \(\left(\cos a-\cos b\right)^2-\left(\sin a-\sin b\right)^2=-4\sin^2\dfrac{a-b}{2}\cos\left(a+b\right)\)
d) \(\sin^2\left(45^0+\alpha\right)-\sin^2\left(30^0-\alpha\right)-\sin15^0\cos\left(15^0+2\alpha\right)=\sin2\alpha\)
Cho \(cosa=-\dfrac{2}{5}\) và \(\pi< a< \dfrac{3\pi}{2}\)
a) Tính các giá trị lượng giác còn lại của góc a
b) Giá trị biểu thức P = cos2a - cos\(\left(\dfrac{\pi}{3}-a\right)\)
b)\(P=cos2a-cos(\dfrac{\pi}{3}-a) \\=2cos^2a-1-cos\dfrac{\pi}{3}cosa-sin\dfrac{\pi}{3}sina \\=2.(\dfrac{-2}{5})^2-1-\dfrac{1}{2}.\dfrac{-2}{5}-\dfrac{\sqrt3}{2}.\dfrac{-\sqrt{21}}{5} \\=\dfrac{-24+15\sqrt7}{50}\)
a, Vì : \(\pi< a< \dfrac{3\pi}{2}\) nên \(cos\alpha< 0\) mà \(cos^2\alpha=1-sin^2\alpha=1-\dfrac{4}{25}=\dfrac{21}{25},\)
do đó : \(cos\alpha=-\dfrac{\sqrt{21}}{5}\)
từ đó suy ra : \(tan\alpha=\dfrac{2}{\sqrt{21}},cot\alpha=\dfrac{\sqrt{21}}{2}\)
tìm a biết a là góc tù và sin4a + cos4a = 5/8
\(sin^4a+cos^4a=\dfrac{5}{8}\)
\(\Leftrightarrow\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a=\dfrac{5}{8}\)
\(\Leftrightarrow1-2sin^2a\left(1-sin^2a\right)=\dfrac{5}{8}\)
\(\Leftrightarrow2sin^4a-2sin^2a+\dfrac{3}{8}=0\Rightarrow\left[{}\begin{matrix}sin^2a=\dfrac{3}{4}\\sin^2a=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sina=\dfrac{\sqrt{3}}{2}\\sina=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=150^0\\a=120^0\end{matrix}\right.\)
Cho \(a=\dfrac{\pi}{11}\). Tính giá trị của biểu thức: A=sina+sin2a+sin3a+sin4a+sin5a