Cho góc vuông xOy cố định, Lấy A,B cố định trên tia Ox, C di động trên tia Oy. Đường thẳng vuông góc với AC tại C và đường thẳng vuông góc với BC tại B cắt nhau tại M. Các điểm M nằm trên đường nào?
Cho góc xOy cố định khác góc bẹt. Các điểm A và B theo thứ tự chuyển động trên các tia Ox và Oy sao cho OA = OB. Đường vuông góc với OA tại A và đường vuông góc với OB tại B cắt nhau ở M. Điểm M chuyển động trên đường nào ?
Xét hai tam giác vuông MOA và MOB: ∠ (MAO) = ∠ (MBO) = 90 0
OA = OB (gt)
OM cạnh huyền chung
Do đó: ∆ MAO = ∆ MBO (cạnh huyền, cạnh góc vuông)
⇒ ∠ (AOM) = ∠ (BOM)
A và B thay đổi, OA và OB luôn bằng nhau nên ∆ MAO và ∆ MBO luôn luôn bằng nhau do đó ∠ (AOM) = ∠ (BOM)
Vậy khi A chuyển động trên Ox, B chuyển động trên Oy mà OA = OB thì điểm M chuyển động trên tia phân giác của góc xOy.
Cho góc vuông xOy. Lấy các điểm I và K lần lượt trên các tia Ox và Oy. Đường tròn (I; OK) cắt tia Ox tại M (I nằm giữa O và M), đường tròn (K; OI) cắt tia Oy tại N (K nằm giữa O và N)
a, Chứng minh (I) và (K) luôn cắt nhau
b, Tiếp tuyến tại M của (I), tiếp tuyến tại N của đường tròn (K) cắt nhau tại C. Chứng minh tứ giác OMCN là hình vuông
c, Gọi A, B là các giao điểm của (I) và (K) trong đó B ở miền trong góc xOy. Chứng minh ba điểm A, B, C thẳng hàng
d, Giả sử I và K thứ tự di động trên các tia Ox và Oy sao cho OI + OK = a không đổi. Chứng minh đường thẳng AB luôn đi qua một điểm cố định
a, Chỉ ra |OI – OK| < IK < OI + OK => (1) và (k) luôn cắt nhau
b, Do OI=NK, OK=IM => OM=ON
Mặt khác OMCN là hình chữ nhật => OMCN là hình vuông
c, Gọi{L} = KB ∩ MC, {P} = IBNC => OKBI là Hình chữ nhật và BNMI là hình vuông
=> ∆BLC = ∆KOI
=> L B C ^ = O K I ^ = B I K ^
mà B I K ^ + I B A ^ = 90 0
L B C ^ + L B I ^ + I B A ^ = 180 0
d, Có OMCN là hình vuông cạnh a cố định
=> C cố định và AB luôn đi qua điểm C
Cho góc xOy cố định khác góc bẹt. Các điểm A và B theo thứ tự chuyển động trên các tia Ox và Oy sao cho OA = OB. Đường vuông góc với OB tại B cắt nhau ở M. Điểm M chuyển động trên đường nào ?
Xét hai tam giác vuông MOA và MOB:
\(\widehat{MAO}=\widehat{MBO}=90^0\)
OA = OB (gt)
OM cạnh huyền chung
Do đó: ∆ MAO = ∆ MBO (cạnh huyền, cạnh góc vuông)
⇒\(\widehat{AOM}=\widehat{BOM}\)
A và B thay đổi, OA và OB luôn bằng nhau nên ∆ MAO và ∆ MBO luôn luôn bằng nhau do đó \(\widehat{AOM}=\widehat{BOM}\)
Vậy khi A chuyển động trên Ox, B chuyển động trên Oy mà OA = OB thì điểm M chuyển động trên tia phân giác của góc xOy.
Cho tam giác ABC cân tại A (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Đường thẳng vuông góc với BC tại D cắt AB tại M, đường thẳng vuông góc với BC tại E cắt AC tại N.
a)CMR: DM=EN
b)CMR đường thẳng BC cắt đoạn MN tại trung điểm I của nó
c)CMR đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D di động trên cạnh BC
Câu hỏi của Nguyễn Thành Nam - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Cho góc nhọn xOy , trên tia Ox lấy điểm A , trên tia Oy lấy điểm B . Từ A kẻ đường thẳng vuông góc với Ox , cắt Oy tại C . Từ B kẻ đường thẳng vuông góc với Oy , cắt Ox tại D .CMR: AC=BD
Không thể bằng nhau được bạn ạ mà chỉ xảy ra TH đồng dạng vì đâu có cặp cạnh nào bằng nhau cho trước sẵn đâu
\(\hept{\begin{cases}OA\ne OB\\OD\ne OC\end{cases}}\)
Mik nghĩ cần bổ sung thêm OB=OA.
Xét tam giác OAC và OBD có:OA=OB,^OBD=^OAC,^AOB chung
Khi đó \(\Delta\)OAC=\(\Delta\)OBD ( ch-gn ) => AC=BD
Sửa hộ mik tí.trường hợp cạnh góc vuông và góc nhọn kề cạnh ấy nha !Hình mình hay nhầm lẫn lắm:((
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B. Từ A kẻ đường thẳng vuông góc với Ox, cắt Oy tại C. Từ B kẻ đường thẳng vuông góc với Oy, cắt Ox tại D. CMR: AC = BD
Nhớ vẽ hình nha!!
Cho góc vuông xOY cố định. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B, hai điểm A và B chuyển động sao cho OA+OB = a (a không đổi). Vẽ 2 đường tròn (A;OB); (B;OA), chúng cắt nhau tại D và E. Cm đường thẳng DE luôn đi qua 1 điểm cố định
Cho góc xOy nhọn . Trên cạnh Ox , lấy A và trên Oy lấy B sao cho OA = OB. Từ A kẻ AC vuông góc với Oy tại C , từ B kẻ BD vuông góc với Ox tại D , AC và BD cắt nhau tại N . Đường thẳng vuông góc với Ox kẻ từ A cắt đường thẳng vuông góc với Oy kẻ từ B tại M .
a. Chứng minh : N nằm trên tia phân giác của góc xOy
b. Chứng minh : O , M , N thẳng hàng
c. Chứng minh : OM vuông góc với AB để suy ra AB song song với CD
Giúp với câu BC mai cần gấp ai làm dc thì dc tick nhiều học giỏi
Cho △ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Đường thẳng vuông góc với BC tại D cắt AB tại M, đường thẳng vuông góc với BC tại E cắt đường thẳng AC tại N. MN cắt BC tại I.C/M
a)DM=EM (có thể bỏ qua)
b)IM=IN;BC<MN
c)gọi O là giao điểm của đường phân giác góc A và đường vuông góc MN tại I. C/m tam giác BNO= tam giác CNO.Từ đó suy ra điểm O cố định
Bn tham khảo ở đây nha : https://olm.vn/hoi-dap/detail/86073517597.html
Hình này đẹp hơn :D.Mà mình không hiểu câu b lắm,nên ghi rõ hơn là IM = IN > BC và c/m MN > BC hay sao? ghi hai dấu vậy khó hiểu lắm.
Cho góc xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Từ A kẻ đường thẳng vuông góc với Ox cắt Oy tại M, từ B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. AM cắt BN tại K. Chứng minh:
a) \(\Delta AKN\) = \(\Delta BKM\)
b) OK là phân giác của góc AOB
a: Xét ΔOAM vuông tại A và ΔOBN vuông tại B có
OA=OB
\(\widehat{AOB}\) chung
Do đó: ΔOAM=ΔOBN
=>\(\widehat{OMA}=\widehat{ONB}\) và OM=ON
Ta có: OA+AN=ON
OB+BM=OM
mà OA=OB và ON=OM
nên AN=BM
Xét ΔKAN vuông tại A và ΔKBM vuông tại B có
KA=KB
\(\widehat{KNA}=\widehat{KMB}\)
Do đó: ΔKAN=ΔKBM
b: ΔKAN=ΔKBM
=>KA=KB
Xét ΔOAK vuông tại A và ΔOBK vuông tại B có
OK chung
OA=OB
Do đó: ΔOAK=ΔOBK
=>\(\widehat{AOK}=\widehat{BOK}\)
=>OK là phân giác của \(\widehat{AOB}\)