Tìm nghiệm của đa thức
a)\(\left(x-3\right).\left(2x+7\right)\)
b) \(\left|x\right|+x\)
c) \(\left|x\right|-x\)
Tìm nghiệm của các đa thức sau:
a) \(\left(2x-\dfrac{3}{2}\right)\left(\left|x\right|-5\right)\)
b) \(x-8x^4\)
c) \(x^2-\left(4x+x^2\right)-5\)
a: (2x-3/2)(|x|-5)=0
=>2x-3/2=0 hoặc |x|-5=0
=>x=3/4 hoặc |x|=5
=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)
b: x-8x^4=0
=>x(1-8x^3)=0
=>x=0 hoặc 1-8x^3=0
=>x=1/2 hoặc x=0
c: x^2-(4x+x^2)-5=0
=>x^2-4x-x^2-5=0
=>-4x-5=0
=>x=-5/4
Cho ba đa thức
\(A\left(x\right)=3x^4-2x^3+3-x^4+2x-2x^4+x-3\)
\(B\left(x\right)=x-2x.x-x^2.x-\left(3-x-2x^4\right)+3\)
\(C\left(x\right)=2x.\left(x^3-4x\right)-x^2-\left(2x^3-6\right)+x^2+16\)
a) thu gọn và sắp xếp các đa thức trên theo luwyx thừa giảm dần của biến
b) thu gọn B(x) - A(x) + 2C(x)
c) Tìm nghiệm của đa thức B(x)
Tìm nghiệm của các đa thức sau:
\(A\left(x\right)=\left(2x-4\right)\left(x+1\right)\)
Giả sử:\(A\left(x\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(x+1\right)=0\)
\(\rightarrow\left[{}\begin{matrix}2x-4=0\\x+1=0\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy \(x=\left\{2;-1\right\}\) là nghiệm của đa thức \(A\left(x\right)\)
đặt A(x) = 0
\(\Leftrightarrow\left(2x-4\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-4=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Cho A(x) = 0
TH1)
\(2x-4=0\)
\(\text{2x = 4}\)
\(\text{x = 2}\)
TH2)
\(\text{x+1= 0}\)
\(\text{x = -1}\)
Vạy nghiệm của đa thức A(x)= \(\left\{-1;2\right\}\)
Cho đa thức \(P\left(x\right)=\left(a+1\right)^2x^3+\left(2a-3\right)x^2-5\). Tìm \(a\) để \(P\left(x\right)\) có một nghiệm là \(x=-2\).
Bài 1: Cho hai đa thức \(f\left(x\right)=5x-7;g\left(x\right)=3x+1\)
1. Tìm nghiệm của \(f\left(x\right);g\left(x\right)\)
2. Tìm nghiệm của đa thức \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
3. Từ kết quả câu 2 suy ra với giá trị nào của \(x\) thì \(f\left(x\right)=g\left(x\right)\)?
Bài 2: Thu gọn rồi tìm nghiệm của các đa thức sau:
1. \(f\left(x\right)=x\left(1-x\right)+\left(2x^2-x+4\right).\)
2. \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x.\)
3. \(h\left(x\right)=x\left(x-1\right)+1.\)
Bài 3: Cho đa thức \(f\left(x\right)=x^2+4x-5\)
1. Số -5 có phải nghiệm của \(f\left(x\right)\)không?
Bài 3 :
1. Thay x = -5 vào f(x) ta được :
\(\left(-5\right)^2-4\left(-5\right)+5=50\)
Vậy x = -5 không là nghiệm của đa thức trên .
Bài 2 :
1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)
=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)
=> \(f_{\left(x\right)}=x^2+4\)
=> \(x^2+4=0\)
Vậy đa thức trên vô nghiệm .
2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)
=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)
=> \(g_{\left(x\right)}=0\)
Vậy đa thức trên vô số nghiệm .
3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)
=> \(h_{\left(x\right)}=x^2-x+1\)
=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
Vậy đa thức vô nghiệm .
Bài 3:
\(f\left(x\right)=x^2+4x-5.\)
+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)
\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)
\(\Rightarrow f\left(x\right)=25-20-5\)
\(\Rightarrow f\left(x\right)=5-5\)
\(\Rightarrow f\left(x\right)=0.\)
Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)
Chúc bạn học tốt!
211. Thu gọn rồi tìm nghiệm của các đa thức sau :
a) \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)
b) \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x\)
c) \(h\left(x\right)=x\left(x-1\right)+1\)
a, \(x-2x^2+2x^2-x+4=4\)
b,\(x^2-5x-x^2-2x+7x=0\)
c,\(x^2-x+1\)
\(\Leftrightarrow x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Tìm nghiệm đa thức sau:
\(a.B\left(x\right)=\left(x+\frac{1}{2}\right).\left(x-3\right)\\ b.D\left(x\right)=x^2-x\\ c.E\left(x^3+8\right)\\ d.F\left(x\right)=2x-5+\left(x-17\right)\)
\(e.C\left(x\right)=x^2-9\\ f.A\left(x\right)=x^2-4x\\ g.H\left(x\right)=\left(2x+4\right).\left(7-14x\right)\)
\(h.G\left(x\right)=\left(3x-5\right)-\left(18-6x\right)\)
a, Thay B(x) = 0 nên (x + 1/2) . (x-3) = 0
nên x + 1/2 = 0 hoặc x-3 = 0
vậy x = -1/2 và x = 3
Đa thức B(x) có 2 nghiệm là x1=-1/2 và x2=3
b, Thay D(x) = 0 nên x2 - x = 0 => x.(x-1) = 0
Vậy x = 0 hoặc x = 1
Đa thức D(x) có 2 nghiệm là x1= 0 và x2 = 1
c, Thay E(x) = 0
nên x3 + 8 = 0 => x3 = -8 => x = -2
Vậy đa thức E(x) có 1 nghiệm là x = -2
d, Thay F(x) = 0 nên 2x - 5 + (x-17) = 0
=> 2x - 5 + x - 17 = 0
=> 3x -22 = 0
=> 3x = 22
x = 22/3
Vậy đa thức F(x) có 1 nghiệm là x = 22/3
e, Thay C(x) = 0 nên x2 - 9 = 0
x2 = 9 => x = 3 hoặc x = -3
Vậy đa thức C(x) có 2 nghiệm là x1= 3 và x2=-3
f, Thay A(x) = 0 nên x2 - 4x = 0
=> x.(x - 4) = 0
=> x = 0 và x = 4
Vậy đa thức A(x) có 2 nghiệm là x1=0 và x2 = 4
g, Thay H(x)= 0 nên (2x+4).(7-14x) = 0
Vậy 2x + 4 = 0 và 7-14x =0
=> x = -2 và x = 1/2
Vậy đa thức H(x) có 2 nghiệm là x1=-2 và x2 = 1/2
h, G(x) = 0 nên (3x-5) - (18-6x) = 0
=> 3x - 5 - 18 + 6x = 0
=> 9x - 23 = 0
=> 9x = 23
x = 23/9
Vậy đa thức này có 1 nghiệm là x = 23/9
a) B(x) = \(\left(x+\frac{1}{2}\right)\left(x-3\right)\)
B(x) = 0 <=> \(\left(x+\frac{1}{2}\right)\left(x-3\right)=0\)
<=> \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=3\end{cases}}\)
Vậy nghiệm của B(x) là -1/2 và 3
b) D(x) = \(x^2-x\)
D(x) = 0 <=> \(x^2-x=0\)
<=> \(x\left(x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy nghiệm của D(x) là 0 và 1
c) E(x) = \(x^3+8\)
E(x) = 0 <=> x3 + 8 = 0
<=> x3 = -8
<=> x3 = -23
<=> x = 3
Vậy nghiệm của E(x) là 3
d) F(x) = 2x - 5 + ( x - 17 )
F(x) = 0 <=> 2x - 5 + ( x - 17 ) = 0
<=> 2x + x + ( -5 - 17 ) = 0
<=> 3x - 22 = 0
<=> 3x = 22
<=> x = 22/3
Vậy nghiệm của F(x) là 22/3
f) A(x) = x2 - 4x
A(x) = 0 <=> x2 - 4x = 0
<=> x( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy nghiệm của A(x) là 0 và 4
g) H(x) = ( 2x + 4 )( 7 - 14x )
H(x) = 0 <=> ( 2x + 4 )( 7 - 14x )
<=> \(\orbr{\begin{cases}2x+4=0\\7-14x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=-4\\14x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
Vậy nghiệm của H(x) là -2 và 1/2
h) G(x) = ( 3x - 5 ) - ( 18 - 6x )
G(x) = 0 <=> ( 3x - 5 ) - ( 18 - 6x ) = 0
<=> 3x - 5 - 18 + 6x = 0
<=> 3x - 23 = 0
<=> 3x = 23
<=> x = 23/3
Vậy nghiệm của G(x) là 23/3
#Mingg nhầm đoạn cuối tí
h) <=> 9x - 23 = 0
<=> 9x = 23
<=> x = 23/9
Vậy nghiệm của G(x) là 23/9
Cho ba đa thức
\(A\left(x\right)=3x^4-2x^3+3-x^4+2x-2x^4+x-3\)
\(B\left(x\right)=x-2x.x-x^2.x-\left(3-x-2x^4\right)+3\)
\(C\left(x\right)=2x.\left(x^3-4x\right)-x^2-\left(2x^3-6\right)+x^2+16\)
a) thu gọn và sắp xếp các đa thức trên theo luwyx thừa giảm dần của biến
b) thu gọn B(x) - A(x) + 2C(x)
c) Tìm nghiệm của đa thức B(x)
Làm dùm vs ạ
Tìm nghiệm của đa thức :
a) \(x^2+3x-2\)
b) \(\left|3x+7\right|+\left|2x^2-2\right|\)
-Mình tưởng các dạng này ở lớp 7 đều ra nghiệm nguyên chứ bạn?
a) -Đặt \(x^2+3x-2=0\)
\(\Rightarrow x^2+2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{17}{4}=0\)
\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2-\dfrac{17}{4}=0\)
\(\Rightarrow\left(x+\dfrac{3}{2}+\dfrac{\sqrt{17}}{2}\right)\left(x+\dfrac{3}{2}-\dfrac{\sqrt{17}}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-3-\sqrt{17}}{2}\\x=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)
-Vậy nghiệm của đa thức là \(x=\dfrac{-3\pm\sqrt{17}}{2}\)
b) -Đặt \(A=\left|3x+7\right|+\left|2x^2-2\right|=0\)
-Khi \(x\ge1\) thì:
\(A=3x+7+2x^2-2=0\)
\(\Rightarrow2x^2+3x+5=0\)
\(\Rightarrow x^2+\dfrac{3}{2}x+\dfrac{5}{2}=0\)
\(\Rightarrow x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{31}{16}=0\)
\(\Rightarrow\left(x+\dfrac{3}{4}\right)^2=-\dfrac{31}{16}\) (vô lí).
-Khi \(-1< x< 1\) thì:
\(A=3x+7-2x^2+2=0\)
\(\Rightarrow-2x^2+3x+9=0\)
\(\Rightarrow-2x^2+6x-3x+9=0\)
\(\Rightarrow-2x\left(x-3\right)-3\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(-2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=\dfrac{-3}{2}\left(loại\right)\end{matrix}\right.\)
-Khi \(\dfrac{-7}{3}\le x\le-1\) , cách làm tương tự như TH khi \(x\ge1\).
-Khi \(x< \dfrac{-7}{3}\) thì:
\(A=-3x-7+2x^2-2=0\)
\(\Rightarrow2x^2-3x-9=0\)
\(\Rightarrow-2x^2+3x+9=0\)
-Đến đây giải như TH khi \(-1< x< 1\).
-Tổng kết lại, vậy đa thức này không có nghiệm.