Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bạn Và Bè
Xem chi tiết
Phạm Đình Tân
5 tháng 11 2021 lúc 8:38
Giải. Áp dụng công thức lượng giác.

Bài tập Tất cả

Khách vãng lai đã xóa
Mai Thị Thanh
Xem chi tiết
Đoàn Minh Huy
Xem chi tiết
Mi Trần
Xem chi tiết
oOo Sát thủ bóng đêm oOo
11 tháng 7 2018 lúc 16:04

ai tích mình mình tích lại cho

An Nặc Hàn
Xem chi tiết
Phương An
15 tháng 8 2017 lúc 21:54

a)

\(\Delta EAB\) ~ \(\Delta FAC\) (g - g)

\(\Rightarrow\dfrac{EA}{FA}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\Rightarrow\Delta AEF\) ~ \(\Delta ABC\)

\(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{AE^2}{AB^2}=\cos^2A\)

\(\Rightarrow S_{AEF}=\cos^2A\left(S_{ABC}=1\right)\) (1)

Chứng minh tương tự, ta có: \(S_{BFD}=\cos^2B\) (2) và \(S_{CDE}=\cos^2C\) (3)

Cộng theo vế của (1) , (2) và (3) => đpcm

b)

\(S_{DEF}=S_{ABC}-\left(S_{AEF}+S_{BFD}+S_{CDE}\right)\text{ }\)

\(=1-\cos^2A-\cos^2B-\cos^2C\)

\(=\sin^2A-\cos^2B-\cos^2C\) (đpcm)

Đỗ Thị Ánh Nguyệt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hai Binh
26 tháng 4 2017 lúc 19:39

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

nguyễn quỳnh lưu
Xem chi tiết
lê thanh tùng
Xem chi tiết
Nguyễn Thiên Kim
20 tháng 7 2016 lúc 20:24

Trước tiên ta chứng minh bài toán phụ: công thức tính diện tích tam giác ABC có góc A nhọn \(S_{\Delta ABC}=\frac{1}{2}AB.AC.\sin A\)

Giải: Kẻ đường cao BH thì \(BH=AB.\sin A\)do đó \(S_{\Delta ABC}=\frac{1}{2}AC.BH=\frac{1}{2}AC.AB.\sin A\)

Ta quay trở lại việc giải bài toán trên. (hình bạn tự vẽ nhé!)

Ta có \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BDF}-S_{CDE}\)suy ra \(\frac{S_{DEF}}{S_{ABC}}=1-\frac{S_{AEF}}{S_{ABC}}-\frac{S_{BDF}}{S_{ABC}}-\frac{S_{CDE}}{S_{ABC}}.\)

Áp dụng bài toán phụ ta có \(\frac{S_{AEF}}{S_{ABC}}=\frac{\frac{1}{2}AE.AF.\sin A}{\frac{1}{2}AB.AC.\sin A}=\frac{AE.AF}{AB.AC}=\frac{AF}{AC}.\frac{AE}{AB}\)

Trong các tam giác vuông ACF và ABE có: \(\cos A=\frac{AF}{AC}\)và \(\cos A=\frac{AE}{AB}\)

Do đó \(\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)tương tự \(\frac{S_{BDF}}{S_{ABC}}=\cos^2B\)và \(\frac{S_{CDE}}{S_{ABC}}=\cos^2C\)

Vậy \(\frac{S_{DEF}}{S_{ABC}}=\left(1-\cos^2A\right)-\cos^2B-\cos^2C=\sin^2A-\cos^2B-\cos^2C.\)

Hay \(S_{DEF}=\left(\sin^2A-\cos^2B-\cos^2C\right).S_{ABC}=\sin^2A-\cos^2B-\cos^2C\)(do \(S_{ABC}=1\)).