Tìm x để B=\(\dfrac{3\sqrt{x}}{\sqrt{x}+1}\) có giá trị nguyên
a) Cho A= \(\frac{\sqrt{X}-3}{2}\). Tìm x thuộc Z và x<30 để A có giá trị nguyên
b) Cho B= \(\frac{5}{\sqrt{X}-1}\)tìm x thuộc Z để B có giá trị nguyên
a) Để A thuộc Z => \(\sqrt{x}\)- 3thuộc ước của 2 => \(\sqrt{x}\)- 3 thuộc -1; -2;1;2
=> căn x = 1 hoặc 2
câu b làm tương tự
\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}\) \(-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) \(-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) \(\left(x\ge0,x\ne4,x\ne9\right)\)
a\()\) Rút gọn biểu thức trên
b\()\) Tìm giá trị nguyên của x để M nhận giá trị nguyên
`a)(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4,x ne 9)`
`=(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`
`=(2sqrtx-9+(sqrtx-3)(sqrtx+3)+(2sqrtx+1)(sqrtx-2))/(x-5sqrtx+6)`
`=(2sqrtx-9+x-9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(3x-sqrtx-20)/
\(M=\frac{1}{\sqrt{x+2\sqrt{x-1}}}-\frac{1}{\sqrt{x-2\sqrt{x-1}}}\)
Tìm điều kiện và rút gọn M
Tìm những giá trị x nguyên (x>2) để M có giá trị Nguyên
ĐK:\(\sqrt{x+2\sqrt{x-1}}=\sqrt{x-1+2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}+1\right)^2}=\left|\sqrt{x-1}+1\right|\)
Suy ra : ĐK là x -1>0 suy ra x>1
Trường hợp mẫu số của phân thức 2 cũng tương tự tìm được ĐK x>1
Ta có \(M=\frac{1}{\sqrt{x-1}+1}-\frac{1}{\sqrt{x-1}-1}\)
\(M=\frac{\sqrt{x-1}-1-\sqrt{x-1}-1}{\left(\sqrt{x-1}+1\right)\left(\sqrt{x-1}-1\right)}\)
\(M=\frac{-2}{x-1-1}=\frac{-2}{x-2}\)
Tới đây rồi thì tìm giá trị nguyên thì giống với lớp 6,7 đó tự tìm thì chắc ai cũng tìm được
Chứng minh với mọi giá trị của x để biểu thức có nghĩa thì giá trị của:
A=(\(\dfrac{\sqrt[]{x}+1}{2\sqrt[]{x}-2}\)+ \(\dfrac{3}{x-1}\)- \(\dfrac{\sqrt[]{x}+3}{2\sqrt[]{x}+2}\)). \(\dfrac{4x-4}{5}\)
Không phụ thuộc vào x
\(M=\frac{1}{\sqrt{x+2.\sqrt{x-1}}}-\frac{1}{\sqrt{x-2.\sqrt{x-1}}}\)
Tìm điều kiện rồi rút gọn M
Tìm những giá trị x nguyên(x>2) để M có gía trị nguyên
\(M=\frac{1}{\sqrt{x+2\sqrt{x-1}}}-\frac{1}{\sqrt{x-2\sqrt{x-1}}}\)
Tìm điều kiện rồi rút gọn M
Tìm những giá trị x nguyên(x>2) để M có gía trị nguyên
\(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\times\left(\frac{\sqrt{x}+1}{\sqrt{x}}\right)\)
a, rút gọn
b, tìm x nguyên để M có giá trị nguyên
Bài1: Cho A= √x-3/2. Tìm x ∈ Z và x < 30 để A có giá trị nguyên
Bài2: Cho B = 5/√x-1. Tìm x ∈ Z để B có giá trị nguyên
1,
\(A=\frac{\sqrt{x-3}}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2\)
Suy ra x là số chính phương lẻ.
Vì x < 30 nên\(x\in\left\{1^2;3^2;5^2\right\}\) hay \(x\in\left\{1;9;25\right\}\)
2,
Khi x là số nguyên thì \(\sqrt{x}\) hoặc là số nguyên (nếu x là số chính phương) hoặc là số vô tỉ (nếu x không phải số chính phương). Để \(B=\frac{5}{\sqrt{x-1}}\) là số nguyên thì \(\sqrt{x}\) không thể là số vô tỉ, do đó \(\sqrt{x}\) là số nguyên và \(\sqrt{x-1}\) phải là ước của 5 tức là √xx - 1 ∈ Ư(5). Để B có nghĩa ta phải có x \(\ge\)0 và x\(\ne\) 1. Ta có bảng sau:
\(\sqrt{x-1}\) | 1 | -1 | 5 | -5 |
\(\sqrt{x}\) | 2 | 0 | 6 | -4(loại) |
\(x\) | 4 | 0 | 36 |
Vậy x\(\in\){4;0;36} (các giá trị này đều thoả mãn điều kiện x \(\ge\) 0 và x\(\ne\) 1).
Cho biểu thức : A=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a, Rút gọn A
b,Tìm các giá trị của x để A <1
c,Tìm các giá trị nguyên của x sao cho A nguyên
cho M= \(\frac{7}{\sqrt{x-1}}\)tìm x thuộc z để M có giá trị nguyên
Để \(\frac{7}{\sqrt{x-1}}\in Z\)thì \(\sqrt{x-1}\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x-1}=1\\\sqrt{x-1}=7\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=50\end{cases}}}\)
Vậy........