Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
loancute
Xem chi tiết
Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 20:46

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+ac+bc}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\) Chứng minh tương tự ta được:

\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+a}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+a}+\dfrac{b}{b+c}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)=\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\left(1+1+1\right)=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)

Nguyễn Việt Lâm
6 tháng 3 2021 lúc 20:48

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

Tương tự: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\) ; \(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)

Cộng vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Đào Thu Hiền
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 1 2022 lúc 16:09

BĐT này không đúng

Ví dụ: với \(a=b=c=0,1\)

Quỳnh Ngân
Xem chi tiết
Akai Haruma
8 tháng 7 2018 lúc 10:50

Lời giải:

a) Ta thấy: \(a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0, \forall a,b>0\)

\(\Rightarrow a+b\geq 2\sqrt{ab}>0\Rightarrow \frac{1}{a+b}\le \frac{1}{2\sqrt{ab}}\).

Vì $a> b$ nên dấu bằng không xảy ra . Tức \(\frac{1}{a+b}< \frac{1}{2\sqrt{ab}}\)

Ta có đpcm

b)

Áp dụng kết quả phần a:

\(\frac{1}{3}=\frac{1}{1+2}< \frac{1}{2\sqrt{2.1}}\)

\(\frac{1}{5}=\frac{1}{3+2}< \frac{1}{2\sqrt{2.3}}\)

\(\frac{1}{7}=\frac{1}{4+3}< \frac{1}{2\sqrt{4.3}}\)

.....

\(\frac{1}{4021}=\frac{1}{2011+2010}< \frac{1}{2\sqrt{2011.2010}}\)

Do đó:

\(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}\)

\(< \frac{\sqrt{2}-\sqrt{1}}{2\sqrt{2.1}}+\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3.2}}+\frac{\sqrt{4}-\sqrt{3}}{2\sqrt{4.3}}+....+\frac{\sqrt{2011}-\sqrt{2010}}{2\sqrt{2011.2010}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}-\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2010}}-\frac{1}{2\sqrt{2011}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2011}}< \frac{1}{2}\) (đpcm)

Vũ Tiền Châu
Xem chi tiết
Khởi My
Xem chi tiết
Akai Haruma
28 tháng 2 2019 lúc 0:06

Lời giải:
Vì $abc=1$ nên tồn tại $x,y,z$ sao cho : \((a,b,c)=\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)\)

Khi đó:

\(\text{VT}=\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}+\frac{1}{\sqrt{\frac{y}{x}+\frac{y}{z}+2}}+\frac{1}{\sqrt{\frac{z}{y}+\frac{z}{x}+2}}=\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}+\frac{\sqrt{xz}}{\sqrt{xy+yz+2xz}}+\frac{\sqrt{xy}}{\sqrt{xz+yz+2xy}}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}^2\leq (1+1+1)\left(\frac{yz}{xy+xz+2yz}+\frac{xz}{xy+yz+2xz}+\frac{xy}{xz+yz+2xy}\right)\)

\(\leq 3\left[\frac{yz}{4}\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)+\frac{xz}{4}\left(\frac{1}{xy+xz}+\frac{1}{xz+yz}\right)+\frac{xy}{4}\left(\frac{1}{xz+xy}+\frac{1}{yz+xy}\right)\right]\)

hay \(\text{VT}^2\leq \frac{3}{4}.\left(\frac{xy+yz}{xy+yz}+\frac{xy+xz}{xy+xz}+\frac{yz+xz}{yz+xz}\right)=\frac{9}{4}\)

\(\Rightarrow \text{VT}\leq \frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$

Nguyễn Thanh
Xem chi tiết
Quỳnh Ngân
Xem chi tiết
đấng ys
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 8 2021 lúc 15:53

\(\dfrac{P}{\sqrt{2}}=\dfrac{a}{\sqrt{2b\left(a+b\right)}}+\dfrac{b}{\sqrt{2c\left(b+c\right)}}+\dfrac{c}{\sqrt{2a\left(a+c\right)}}\)

\(\dfrac{P}{\sqrt{2}}\ge\dfrac{2a}{2b+a+b}+\dfrac{2b}{2c+b+c}+\dfrac{2c}{2a+a+c}\)

\(\dfrac{P}{\sqrt{2}}\ge2\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)=2\left(\dfrac{a^2}{a^2+3ab}+\dfrac{b^2}{b^2+3bc}+\dfrac{c^2}{c^2+3ca}\right)\)

\(\dfrac{P}{\sqrt{2}}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3}{2}\)

\(\Rightarrow P\ge\dfrac{3\sqrt{2}}{2}\) (đpcm)

missing you =
8 tháng 8 2021 lúc 16:00

\(\dfrac{a}{\sqrt{ab+b^2}}=\dfrac{\sqrt{2}.a}{\sqrt{2b\left(a+b\right)}}\ge\dfrac{\sqrt{2}.a}{\dfrac{2b+a+b}{2}}=\dfrac{2\sqrt{2}a}{a+3b}\)

làm tương tự với \(\dfrac{b}{\sqrt{bc+c^2}};\dfrac{c}{\sqrt{ca+a^2}}\)

\(=>P\ge2\sqrt{2}\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)\)

\(=2\sqrt{2}\left(\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\right)\)

\(=2\sqrt{2}\left[\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+\dfrac{4}{3}\left(ab+bc+ca\right)+\dfrac{8}{3}\left(ab+bc+ca\right)}\right]\)

\(=2\sqrt{2}\left[\dfrac{\left(a+b+c\right)^2}{\dfrac{4}{3}\left(a+b+c\right)^2}\right]=\dfrac{2\sqrt{2}.3}{4}=\dfrac{3\sqrt{2}}{2}\)

dấu"=" xảy ra<=>a=b=c

Vũ Tiền Châu
Xem chi tiết
Vũ Tiền Châu
20 tháng 10 2017 lúc 23:26

nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)