Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuấn
Xem chi tiết
nguyễn thanh liêm
Xem chi tiết
Nguyễn Quốc HIệu
21 tháng 3 2016 lúc 9:15

=> 3x-(1/2013+2/2012+3/2011)=3x-(4/2010+5/2009+6/2008)=>6x=-4/2010-5/2009-6/2008+1/2013+2/2012+3/2011                                                                                       =>x=...                                                                          làm tiếp đi bạn

Đặng Gia Ân
Xem chi tiết
bach nhac lam
27 tháng 9 2020 lúc 10:43

ĐKXĐ : \(\left\{{}\begin{matrix}x\ge2011\\y\ge2012\\z\ge2013\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-2011}\ge0\\b=\sqrt{y-2012}\ge0\\c=\sqrt{z-2013}\ge0\end{matrix}\right.\) ta có :

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}+\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}=0\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow a=b=c=2\Leftrightarrow\left\{{}\begin{matrix}x=2015\\y=2016\\z=2017\end{matrix}\right.\)

pham van kien
Xem chi tiết
Huỳnh Cẩm
Xem chi tiết
Lầy Văn Lội
4 tháng 5 2017 lúc 12:44

Áp dụng bất đẳng thức bunyakovsky:

\(VT^2=\left(\sqrt{2015-x}+\sqrt{x-2013}\right)^2\le2\left(2015-x+x-2013\right)=4\)

\(\Rightarrow VT\le2\)

lại có \(VF=x^2-4028x+4056198=\left(x-2014\right)^2+2\ge2\)

do đó VT=VF khi x=2014 

Huỳnh Cẩm
4 tháng 5 2017 lúc 14:57

thế sao k nhận -2 vậy bạn

Lầy Văn Lội
4 tháng 5 2017 lúc 20:45

nghĩa là s hả bạn 

Nguyễn Tuấn
Xem chi tiết
danhdanhdanh
Xem chi tiết
Mạnh Phan
Xem chi tiết
Mạnh Phan
Xem chi tiết
anonymous
18 tháng 12 2020 lúc 19:04

Ta có:

\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\\ \Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\\ \Leftrightarrow y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\left(1\right)\)

Tương tự: \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\left(2\right)\)

Do đó: 2x=-2y

Suy ra: x=-y

Do đó:

\(x^{2013}+y^{2013}=\left(-y\right)^{2013}+y^{2013}=0\left(ĐPCM\right)\)