Cho Δ ABC vuông tại A . Tia phân giác B cắt cạnh AC tại D . Kẻ DH⊥BC tại H
a) Chứng minhΔ ABD=HBD
b) Qua B vẽ đường thẳng vuông góc với BC . Đường thẳng này cắt đường thẳng AC tại M . Chứng minh ΔBMD cân tại M
c) Chứng minh BM+BC<MC+AB
Bài 6: Cho ΔABC vuông tại A. Trên cạnh BC lấy điểm D sao cho BD =BA . Tia phân giác của B cắt cạnh AC ở E.
a) Chứng minh Δ BEA =ΔBED b) Qua C vẽ đường thẳng vuông góc với BE tại H. CH cắt đường thẳng AB tại F. Chứng minh BF=BC
c) Chứng minhΔ BAC=BDF và D, E, F thẳng hàng
a: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
b: Xét ΔBFC có
BH vừa là đường cao, vừa là phân giác
=>ΔBFC cân tại B
c: Xét ΔBAC và ΔBDF có
BA=BD
góc ABC chung
BC=BF
=>ΔBAC=ΔBDF
=>góc BDF=góc BAC=90 độ
=>D,E,F thẳng hàng
Cho Δ ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và đường thẳng DH cắt đường thẳng AB tại K. Chứng minh
a) Δ ABD = ΔHBD
b) DK = DC
c) Tam giác KBC là tam giác cân.
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó:ΔABD=ΔHBD
b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó: ΔADK=ΔHDC
Suy ra: DK=DC
c: Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
hay ΔBKC cân tại B
Cho Δ ABC vuông tại B, BC = 15 cm, BA = 8 cm. Trên cạnh BC lấy E sao cho BE = BA
a) Tính AC
b) Δ ABE là tam giác gì? Vì sao
c) Từ B kẻ đường thẳng vuông với AE tại H và cắt AC tại D. Chứng minh BD là tia phân giác của góc ABC
d) Gọi I là giao điểm của đường thẳng AD và DE. Chứng minh A song song IC
Cho Δ ABC cân có góc A = 120°. Vẽ tia phân giác AI ( I ∈ BC ). Từ I vẽ IH vuông góc AB tại H, IK vuông góc AC tại K, trên đoạn HB lấy N sao cho HM = KN
a) Chứng minh Δ IMN cân
b) Chứng minh HK song song MN
c) Từ C vẽ đường thẳng d ⊥ BC cắt tia BA tại E. Biết CE = 8 cm. Tính CK và HK
THANKS MN
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.
a) Tính độ dìa AC khi AB= 9cm, BC= 15cm
b) Chứng minh: Tam giác ABD=tam giác EBD
c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân
d) Chứng minh: AD<DC
Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D
a) Tính độ dài BC?
b) Chứng minh rằng: Tam giác ABF=tam giác CDF
c) Chứng minh: BF<(AB+BC):2
Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH
a) Tính độ dài BC khi AB= 9cm, AC= 12cm
b) Chứng minh: Tam giác ABD=tam giác HBD
c) Chứng minh: Tam giác KDC cân
d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH
a) Tính độ dài BC khi AB= 3cm, AC= 4cm
b) Chứng minh: Tam giác ABD=tam giác HBD
c) Chứng minh \(Dh\perp BC\)
d) So sánh DH với DK
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
#)Góp ý :
Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v
Bài 1: a, áp dụng định lí py-ta-go vào t.giác vuông ta có:
\(BC^2=AC^2+AB^2\)
=> \(AC^2=BC^2-AB^2\)
=> \(AC^2\)=225-81=144
=>AC=12 (cm)
vậy AC=12 cm
b, xét 2 tam giác vuông ABD và EBD có:
BD cạnh chung
BA=BE(gt)
=> \(\Delta ABD=\Delta EBD\)(cạnh huyền-cạnh góc vuông)
c, ta có: \(\Delta ADH=\Delta EDC\)(cạnh góc vuông-góc nhọn)
=> AH=EC(2 cạnh tương ứng)
Mà AB=EB(câu b) => HB=CB
=> \(\Delta HBC\)cân tại B
d, trong tam giác vuông ADH có: AD<DH(vì cạnh huyền lớn hơn cạnh góc vuông) mà DH=DC=> DC>AD hay AD<DC đpcm
Cho tam giác ABC vuông tại A,tia phân giác góc B cắt cạnh AC tại M.Kẻ MD vuông góc với BC tại D.
a)Chứng minh: góc BMA = góc BMD
b)Gọi E là giao điểm của hai đường thẳng MD và BA Chứng minh:AC=DE
c)Chứng minh: Δ A M E = Δ D M C
d)Kẻ DH ⊥ MC tại H và AK ⊥ ME tại K.Hai tia DH và AK cắt nhau tại N.Chứng minh:MN là phân giác của góc KMH
e)Chứng minh:Ba điểm B,M,N thẳng hàng g)Chứng minh:BN ⊥ AD,BN ⊥ EC
h) Δ ABC thỏa mãn điều kiện gì để Δ NAD là tam giác đều
Cho Tam giác ABC vuông tại A có AB=5cm, AC=12cm
a) tính BC
b) Phân giác của góc ABC cắt AC tại D. Kẻ DH vuông góc BC (H thuộc BC)
Chứng minh Tam giác ABD = tam giác HBD
c) Tia HD cắt đường thẳng AB tại E. Chứng minh Tam giác DEC cân tại D
Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I
a) Chứng minh tam giác ABD = tam giác ACE
b) Chứng minh I là trung điểm của BC
c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH
d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF
Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K
a) Tính độ dài cạnh BC
b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC
c) Chứng minh AC = DK
d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân
Các bạn làm hộ mình nha, mình cần gấp lắm
nhìu zữ giải hết chắc chết!!!
758768768978980
Cho tam giác ABC vuông tại A đường phân giác của góc B cắt AC tại D,vẽ DH vuông góc với BC (H thuộc BC)
a;Chứng minh tam giác ABD =tam giác HBD.
b;trên tia đối của AB lấy điểm K sao cho AK = HC .Chứng minh 3 điểm K,D,H thẳng hàng.
a, xét ΔABDvàΔHBDΔABDvàΔHBD có
AD chung
ABDˆ=HBDˆABD^=HBD^ ( AD là tia phân giác của ABCˆABC^ )
Aˆ=Hˆ=900A^=H^=900
=> ΔΔ ABD = ΔΔHBD ( ch - gn )
b, xét ΔKADvàΔCHDΔKADvàΔCHD có
AK = HC ( gt)
AD = DH ( câu a )
Aˆ=Hˆ=900A^=H^=900
=> ΔAKD=ΔHDCΔAKD=ΔHDC
=> ADKˆ=HDCˆADK^=HDC^ mà 2 góc này ở vị trí đối đỉnh
=> đpcm
a, Xét \(\Delta\)ABD và \(\Delta\)HBD có
AD_chung
^ABD = ^HBD ( AD là tia p/g của ^ABC )
^A = ^H ( = 900 )
=> \(\Delta\)ABD = \(\Delta\)HBD (ch-gn)
b, Xét \(\Delta\)KAD và \(\Delta\)CHD có
AK = HC (gt)
AD = DH (câu a)
^A = ^H ( = 900 )
=> \(\Delta\)AKD =\(\Delta\)HDC
=> ^ADK = ^HDC (đđ)
Vậy 3 điểm K,D,H thẳng hàng
a, Xét △ABD vuông tại A và △HBD vuông tại H
Có: ABD = HBD (gt)
DB là cạnh chung
=> △ABD = △HBD (ch-gn)
b, Xét △ADK vuông tại A và △HDC vuông tại H
Có: AK = HC (gt)
AD = HD (△ABD = △HBD)
=> △ADK = △HDC (cgv)
=> ADK = HDC (2 góc tương ứng)
Ta có: CDH + HDA = 180o (2 góc kề bù)
=> ADK + HDA = 180o
=> KDH = 180o
=> 3 điểm K, D, H thẳng hàng.
Cho tam giác ABC vuông tại A (AB>AC).Tia phân giác của góc ABC cắt AC tại D.Từ D kẻ đường thẳng vuông góc với BC cắt BC tại H.Trên tia AC lấy điểm E sao cho AE=AB, đường thẳng vuông góc với AC tại E cắt đường thẳng DH tại K.Từ B kẻ đường thẳng vuông góc với EK, đường thẳng này cắt EK tại I. Chứng minh:BK là tia phân giác của góc CBI.
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng.
2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng