\(x^3-4x^2-xy+5x+y+3=0\)
Tìm các số nguyên x,y
Ttìm cặp số x, y nguyên thỏa mãn 5x^2 +y^2 -2xy+2x-6y+1<0
Tìm cặp số x,y thỏa 5x^2 +2y+y^2 -4x-40=0
Giải hệ phương trình sau:
xy(x-y)=2
9xy(3x-y)+6=26x^3 -2y^3
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
Tìm các số nguyên (x,y) thỏa mãn x²+xy-3y-5x+3=0
\(x^2+xy-3y-5x+3=0\)(*)
\(\Leftrightarrow x^2+\left(y-5\right).x+3-3y=0\)
Coi đây là pt bậc 2 ẩn x
Ta có:
\(\Delta=\left(y-5\right)^2-4.1\left(3-3y\right)\\ =y^2-10y+25-12+12y\\ =y^2+2y+13\)
Để pt có nghiệm nguyên thì Δ là số chính phương
\(\text{Đặt}y^2+2y+13=k^2\left(k\in N\right)\\ \Rightarrow\left(y^2+2y+1\right)-k^2+12=0\\ \Rightarrow\left(y+1\right)^2-k^2=-12\\ \Rightarrow\left(y-k+1\right)\left(y+k+1\right)=-12\)
Vì y, k ∈ N\(\Rightarrow\left\{{}\begin{matrix}y-k+1,y+k+1\in Z\\y-k+1,y+k+1\inƯ\left(-12\right)\\y-k+1< y+k+1\end{matrix}\right.\)
Ta có bảng:
y-k+1 | -1 | -2 | -3 | -4 | -6 | -12 |
y+k+1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | \(4,5\left(loại\right)\) | 1(tm) | -0,5(loại) | -1(tm) | -3(tm) | -6,5(loại) |
Với y=1 thay vào (*) ta tìm được \(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Với y=-1 thay vào (*) ta không tìm được x nguyên
Với y=-3 thay vào (*) ta tìm được \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(0;1\right);\left(4;1\right);\left(2;-3\right);\left(6;-3\right)\right\}\)
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Tìm nghiệm nguyên của phương trình : \(x^3-4x^2-xy+5x+y+3=0\)
Khó quá đi
1) TÌM CÁC CẶP SỐ NGUYÊN X VÀ Y BIẾT :
a) ( x + 1 )(y - 2)=0
b)(x+3)(y-6)= -4
c) xy + 5x =4
a, => x+1=0 hoặc y-2=0
=> x=-1 hoặc y=2
Tk mk nha
1/tìm các cặp số nguyên (x;y) thỏa mãn:\(5x^2+2xy+y^2-4x-40=0\)0
2/tìm các số nguyên x;y thỏa mãn:\(3xy+x+15y-44=0\)
3/gtp nghiệm nguyên :\(2x^2+3xy-2y^2=7\)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
1.Tìm các số nguyên x và y thỏa manc 6xy+4x-9y-7=0
2.Tìm giá trị nhỏ nhất của biểu thức A=x3+y3+xy,trong đó x,y là các số dương thỏa mãn điều kiện x+y=1
Tìm số nguyên x,y biết:
a)3x+xy-y-5=0
b) A= 5x- 2\x - 3 thuộc Z
c) B = 6x - 1\ 3x + 2 thuộc Z
d) C= 10x\ 5x - 2 thuộc Z
e) D= 19\ x- 1 * x\9 thuộc Z
f) E = 4x + 5 \ x - 3 thuộc Z
b) A=\(\frac{5x-2}{x-3}=\frac{5x-15+13}{x-3}=\frac{5x-15}{x-3}+\frac{13}{x-3}=\frac{5\left(x-3\right)}{x-3}+\frac{13}{x-3}=5+\frac{13}{x-3}\)
Để A thuộc Z thì \(5+\frac{13}{x-3}\in Z\)
=>13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
x-3=-1 x-3=1 x-3 =-13 x-3=13
x =-1+3 x =1+3 x =-13+3 x =13+3
x=2 x =4 x=-10 x=16
Vậy x=2;4;-10;16 thì A thuộc Z
c)B=\(\frac{6x-1}{3x+2}=\frac{6x+4-5}{3x+2}=\frac{6x+4}{3x+2}+\frac{-5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{-5}{3x+2}=2+\frac{-5}{3x+2}\)
Để B thuộc Z thì \(2+\frac{-5}{3x+2}\in Z\)
=>-5 chia hết cho 3x+2
=>3x+2\(\in\)Ư(-5)={-1;1;-5;5}
3x+2=-1 3x+2=1 3x+2=-5 3x+2=5
3x =-3 3x =-1 3x =-7 3x =3
x =-1 x =-1/3 x =-7/3 x =1
Vậy x=-1;-1/3;-7/3;1 thì B thuộc Z
d) C=\(\frac{10x}{5x-2}=\frac{10x-4+4}{5x-2}=\frac{10-4}{5x-2}+\frac{4}{5x-2}=\frac{2\left(5x-2\right)}{5x-2}+\frac{4}{5x-2}=2+\frac{4}{5x-2}\)
Để C thuộc Z thì \(2+\frac{4}{5x-2}\in Z\)
=> 4 chia hết cho 5x-2
=>5x-2\(\in\)Ư(4)={-1;1;-2;2;-4;4}
5x-2=-1 5x-2=1 5x-2=2 5x-2=-2 5x-2=4 5x-2=-4
bạn tự giải tìm x như các bài trên nhé
d) bạn ghi đề mjk ko hjeu
e)E=\(\frac{4x+5}{x-3}=\frac{4x-12+17}{x-3}=\frac{4x-12}{x-3}+\frac{17}{x-3}=\frac{4\left(x-3\right)}{x-3}+\frac{17}{x-3}=4+\frac{17}{x-3}\)
Để E thuộc Z thì\(4+\frac{17}{x-3}\in Z\)
=>17 chia hết cho x-3
=>x-3 \(\in\)Ư(17)={1;-1;17;-17}
x-3=1 x-3=-1 x-3=17 x-3=-17
bạn tự giải tìm x nhé
điều cuối cùng cho mjk ****
tìm các cặp số nguyên x,y biết
a,(x+1)(y+3)=0
b,(x-5)(y-6)=-5
c,xy+5x=-7
a, Vì (x + 1) (y +3) = 0
nên x + 1 = 0 hoặc y + 3 = 0
+ Nếu x + 1 = 0 thì x = -1
+ Nếu y + 3 = 0 thì y = -3
Vậy x = -1; y = -3
b, Vì (x - 5) (y - 6) = - 5
nên x - 5 và y - 6 thuộc Ư(-5) = {1; 5; -1; -5}
Ta có bảng sau:
x - 5 | 1 | 5 | -1 | -5 |
y - 6 | -5 | -1 | 5 | 1 |
x | 6 | 10 | 4 | 0 |
y | 1 | 5 | 11 | 7 |
Vậy nếu x = 6 thì y = 1
x = 10 thì y = 5
x = 4 thì y = 11
x = 0 thì y = 7
c, xy + 5x = -7
x (y + 5) = -7
Vậy x và y- 5 thuộc Ư(-7) = {1; 7; -1; -7}
Ta có bảng sau:
x | 1 | -1 | 7 | -7 |
y - 5 | -7 | 7 | -1 | 1 |
y | -2 | 12 | 4 | 6 |
Vậy nếu x = 1 thì y = -2
x = -1 thì y = 12
x = 7 thì y = 4
x = -7 thì y = 6
a ) ( x + 1 ) ( y + 3 ) = 0
=> \(\orbr{\begin{cases}x+1=0\\y+3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0-1=-1\\y=0-3=-3\end{cases}}\)
a, ( x + 1 )( y + 3 ) = 0
=> x + 1 = 0 hoặc y + 3 = 0
Nếu x + 1 = 0
x = 0 - 1 = -1
Nếu y + 3 =0
y = 0 - 3 = -3
Vậy x = -1 và y = -3
bạn ơi hình như đề bạn viết nó có sai sai sao ý =(