Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Kelbin Noo
Xem chi tiết
Nguyễn Huy Tú
18 tháng 6 2017 lúc 18:45

Áp dụng bất đẳng thức AM - GM ta có:

\(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\le\dfrac{2}{2\sqrt{ab}}+\dfrac{2}{2\sqrt{bc}}+\dfrac{2}{2\sqrt{ac}}\)

\(=\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ca}}\le\dfrac{1}{\sqrt{a^2}}+\dfrac{1}{\sqrt{b^2}}+\dfrac{1}{\sqrt{c^2}}\)

\(=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Dấu " = " xảy ra khi \(a=b=c\)

Vậy...

Lightning Farron
18 tháng 6 2017 lúc 18:45

Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\). Tương tự cho 2 BĐT còn lại có:

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{a+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

Đẳng thức xảy ra khi \(a=b=c\)

Nguyễn Đức Tâm
Xem chi tiết
vvvvvvvv
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 5 2021 lúc 13:43

Ta có đánh giá sau với a không âm:

\(\dfrac{a}{1+a^2}\le\dfrac{36a+3}{50}\)

Thật vậy, BĐT tương đương:

\(\left(36a+3\right)\left(a^2+1\right)\ge50a\)

\(\Leftrightarrow\left(3a-1\right)^2\left(4a+3\right)\ge0\) (luôn đúng)

Tương tự: \(\dfrac{b}{1+b^2}\le\dfrac{36b+3}{50}\) ; \(\dfrac{c}{1+c^2}\le\dfrac{36c+3}{50}\)

Cộng vế: \(VT\le\dfrac{36\left(a+b+c\right)+9}{50}=\dfrac{9}{10}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Lê Thị Thục Hiền
19 tháng 5 2021 lúc 13:51

Ta chứng minh bđt phụ \(\dfrac{a}{1+a^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(a-\dfrac{1}{3}\right)\)

Thật vậy bđt trên \(\Leftrightarrow\dfrac{-3a^2+10a-3}{10\left(1+a^2\right)}-\dfrac{18}{25}\left(a-\dfrac{1}{3}\right)\le0\)

\(\Leftrightarrow\left(a-\dfrac{1}{3}\right)\left[\dfrac{3\left(3-a\right)}{10\left(1+a^2\right)}-\dfrac{18}{25}\right]\le0\)

\(\Leftrightarrow-\dfrac{36\left(a-\dfrac{1}{3}\right)^2\left(\dfrac{3}{4}+a\right)}{50\left(1+a^2\right)}\le0\) ( luôn đúng với mọi \(a\)\(\ge\)0)

Tương tự cũng có:\(\dfrac{b}{1+b^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(b-\dfrac{1}{3}\right)\)\(\dfrac{c}{1+c^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(c-\dfrac{1}{3}\right)\)

Cộng vế với vế => VT\(\le\dfrac{9}{10}+\dfrac{18}{25}\left(a+b+c-1\right)=\dfrac{9}{10}\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{3}\)

 

 

ĐỖ THỊ THANH HẬU
Xem chi tiết
Komorebi
6 tháng 5 2018 lúc 8:50

a, b, c > 0

Áp dụng bất đẳng thức AM - GM (Cauchy):

\(\dfrac{a}{b^2}+\dfrac{1}{a}\ge2\sqrt{\dfrac{a}{b^2}.\dfrac{1}{a}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\)

\(\dfrac{b}{c^2}+\dfrac{1}{b}\ge2\sqrt{\dfrac{b}{c^2}.\dfrac{1}{b}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\)

\(\dfrac{c}{a^2}+\dfrac{1}{c}\ge2\sqrt{\dfrac{c}{a^2}.\dfrac{1}{c}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\)

Vậy ta có :

\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{b}+\dfrac{2}{c}+\dfrac{2}{a}\)

\(\Leftrightarrow\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)

Hung nguyen
7 tháng 5 2018 lúc 8:57

Cách dùng hằng đẳng thức:

\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\)

\(=\left(\dfrac{a}{b^2}-\dfrac{2}{b}+\dfrac{1}{a}\right)+\left(\dfrac{b}{c^2}-\dfrac{2}{c}+\dfrac{1}{b}\right)+\left(\dfrac{c}{a^2}-\dfrac{2}{a}+\dfrac{1}{c}\right)\)

\(=\left(\dfrac{\sqrt{a}}{b}-\dfrac{1}{\sqrt{a}}\right)^2+\left(\dfrac{\sqrt{b}}{c}-\dfrac{1}{\sqrt{b}}\right)^2+\left(\dfrac{\sqrt{c}}{a}-\dfrac{1}{\sqrt{c}}\right)^2\ge0\)

Nguyễn Đình Phú
6 tháng 5 2018 lúc 20:30

xét hiệu đấy

lâm
Xem chi tiết
Tuyển Trần Thị
17 tháng 2 2018 lúc 10:05

áp dụng bdt côsi \(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{3}{b}\)

tuông tu \(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{3}{c}\)

\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{3}{a}\)

suy ra vt +\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

suy ra dpcm

dau = xay ra khi a=b=c

Phạm Đức Minh
Xem chi tiết
Phạm Nguyễn Tất Đạt
17 tháng 3 2018 lúc 20:51

a)Svac-so:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)

b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)

\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)

\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)

Lặng Thầm
Xem chi tiết
hattori heiji
17 tháng 5 2018 lúc 13:14

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\) hả Lặng Thầm

Phan Anh Thư
Xem chi tiết
Lê Hà Vy
Xem chi tiết
Lightning Farron
9 tháng 8 2017 lúc 12:13

Đặt \(T=\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)

\(BDT\Leftrightarrow\dfrac{a^2+bc}{b+c}+\dfrac{b^2+ca}{c+a}+\dfrac{c^2+ab}{a+b}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2+bc}{b+c}-a+\dfrac{b^2+ca}{c+a}-b+\dfrac{c^2+ab}{a+b}-c\ge0\)

\(\Leftrightarrow\dfrac{a^2+bc-ab-ac}{b+c}+\dfrac{b^2+ac-ab-bc}{a+c}+\dfrac{c^2+ab-ac-bc}{a+b}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)}{b+c}+\dfrac{\left(b-a\right)\left(b-c\right)}{a+c}+\dfrac{\left(c-a\right)\left(c-b\right)}{a+b}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)\left(a^2-c^2\right)+\left(b^2-a^2\right)\left(b^2-c^2\right)+\left(c^2-a^2\right)\left(c^2-b^2\right)}{T}\ge0\)

\(\Leftrightarrow\dfrac{a^4+b^4+c^4-b^2c^2-c^2a^2-a^2b^2}{T}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2}{2T}\ge0\)

Xảy ra khi \(a=b=c\)

Neet
10 tháng 8 2017 lúc 19:15

\(BĐT\Leftrightarrow\sum\left(\dfrac{1}{a}-\dfrac{b+c}{a^2+bc}\right)\ge0\)

\(\Leftrightarrow\sum\dfrac{\left(a-b\right)\left(a-c\right)}{a\left(a^2+bc\right)}\ge0\)

Giả sử \(a\ge b\ge c\)thì

\(\dfrac{\left(a-b\right)\left(a-c\right)}{a\left(a^2+bc\right)}\ge0\).vậy nên chỉ cần chứng minh

\(\dfrac{\left(b-c\right)\left(b-a\right)}{b\left(b^2+ac\right)}+\dfrac{\left(c-a\right)\left(c-b\right)}{c\left(c^2+ab\right)}\ge0\)

\(\Leftrightarrow\left(b-c\right)\left[\dfrac{b-a}{b\left(b^2+ac\right)}+\dfrac{a-c}{c\left(c^2+ab\right)}\right]\ge0\)

\(\Leftrightarrow\left(b-c\right)\left[\left(b-a\right)\left(c^3+abc\right)+\left(a-c\right)\left(b^3+abc\right)\right]\ge0\)

\(\Leftrightarrow\left(b-c\right)^2\left(b+c\right)\left(ab+ac-bc\right)\ge0\)( đúng vì \(a\ge b\ge c\))

Vậy BĐT được chứng minh.

Dấu = xảy ra khi a=b=c