Cho hình bình hành ABCD có góc D nhọn Gọi H và K lần lượt là hình chiếu của B trên các đường thẳng AD và DC chứng minh
a) Tam giác HAB đồng dạng với tam giác KCB
b) Tam giác ABD đồng dạng với tam giác BHK
c) DA . DH + DC . DK = DB2
Cho hình bình hành ABCD có góc D nhọn Gọi H và K lần lượt là hình chiếu của B trên các đường thẳng AD và DC chứng minh
a) Tam giác HAB đồng dạng với tam giác KCB
b) Tam giác ABD đồng dạng với tam giác BHK
c) DA . DH + DC . DK = DB2
Cho hình bình hành ABCD có AC giao BD tại 0 , AC> BD . Gọi E,F lần lượt là hình chiếu của B và D trên đường thẳng AC . Gọi H và K lần lượt là hình chiếu của C trên đường thẳng AB và AD .
a\ Chứng minh tam giác BEO đồng dạng với tam giác DFO . Từ đó chứng minh EO = FO
b\ Chứng minh CH.CD = CB.C
mk k bt đâu hưng vlog ạ ối dồi ôi
cái này giống toán 8 chứ k phải toán 9
Cho hình bình hành ABCD (AC>BD). Gọi E,F lần lượt là hình chiếu của B, D trên AC, gọi H, K lần lượt là hình chiếu của C trên AB và AD. Chứng minh tam giác CHK đồng dạng với tam giác BCA
Cho hình bình hành ABCD có AC giao BD tại 0 , AC> BD . Gọi E,F lần lượt là hình chiếu của B và D trên đường thẳng AC . Gọi H và K lần lượt là hình chiếu của C trên đường thẳng AB và AD .
a\ Chứng minh tam giác BEO đồng dạng với tam giác DFO . Từ đó chứng minh EO = FO
b\ Chứng minh CH.CD = CB.C
cho hình bình hành abcd có góc a<90 độ. từ c kẻ các đường cm, cn lần lượt vuông góc với đường thẳng ab và ad. gọi h là hình chiếu của b lên ac. Chứng minh:
a) tam giác BHC đồng dạng tam giác CNA
b) AB.CM = AD.CN
c) AD.AN+AB.AM= AC bình phương
Cho hình bình hành ABCD , từ M kẻ tùy ý trên AC, kẻ ME vuông góc với AB, MF vuông góc với AD. Gọi H,K theo thứ tự là hình chiếu của B,D trên AC.
a) Chứng minh tam giác AME đồng dạng tam giác ABH; tam giác AADK đồng dạng với tam giác AMF
b) ME/MF=AD/AB
Kẻ DH,BK lần lượt vuông góc với AC
Xét ΔMEA vuông tại E và ΔBKA vuông tại K có
góc MAE chung
=>ΔMEA đồng dạng với ΔBKA
=>ME/BK=MA/BA
Xét ΔMFA vuông tại F và ΔDHA vuông tại H có
góc DAH chung
=>ΔMFA đồng dạng vơi ΔDHA
=>MF/DH=MA/DA
=>ME/MF=BK/DH:(MA/BA:MA/DA)=1*(1/BA:1/DA)=AD/AB
Cho hình bình hành ABCD AC>BD. Gọi E,F lần lượt là hình chiếu của C trên các đường thẳng AB và AD; I là hình chiếu của B trên AC. CMR: tam giác CIB đồng dạng tam giác DFC
Cho hình bình hành ABCD có AC > BD. Gọi H, K lần lượt là hình chiếu vuông góc của C trên đường thẳng AB và AD. Cmr
CH/CB=CK/CD
Tam giác CHK đồng dạng tam giác BCA
AB.AH + AD.AK= AC x AC
cho hình bình hành ABCD có AC>BD . Gọi H, K lần lượt là hình chiếu vuông góc của C trên đường thẳng AB và CD . CM
a, CH.CD=CK.CB
b, tam giác CHK đồng dạng với tam giác BCA
c, AB.AH+AD.AK=AC2
a, BE, DF cùng vuông góc vs AC nên BE//DF
tam giác BEO = tam giác DFO ( cạnh huyền - góc nhọn) (O là gđ 2 đường chéo)
=> BE = FD
từ đó đc tg BEDF là hình bình hành
b, tam giác BHC đồng dạng vs tam giác DKC (g.g)
có góc H = góc k =90 độ
và góc CBH = góc CDK ( vì 2 góc này kề bù vs 2 góc bằng nhau là góc CBA =góc ADC)
=> BC/DC = HC/KC
=>CB.CK = CH.CD
c, tam giác ABE đồng dạng vs tam giác ACH (g.g)
vì có góc E = góc H = 90 độ
và góc A chung
=> AB/AC = AE/AH
=> AB. AH = AC.AE
T]ơng tự ta đc tam giác ADF đồng dạng vs tam giác ACK
=> AD/AC = AF/AK
=> AD. AK = AC.AF
Vậy AB.AH + AD.AK = AC.AE + AC.AF = AC. (AE +AF) = AC .( AE +CE) = AC^2
tự chứng minh AF = CE theo tam giác vuông BEC = tam giác vuông DFA ( cạnh huyền - cạnh góc vuông)