Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Đăng Khoa
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 8 2021 lúc 10:26

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

Lấp La Lấp Lánh
20 tháng 8 2021 lúc 10:34

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

bùi nguyễn thiên long
Xem chi tiết
Akai Haruma
7 tháng 12 2023 lúc 0:00

Lời giải:
a.

\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)

\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)

b.

\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)

\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)

$\Rightarrow 10A< 10B\Rightarrow A< B$

Nguyễn Hoàng Gia Bảo
Xem chi tiết

Giải:

Ta có:

A=2010+1/2010-1

A=2010-1+2/2010-1

A=1+2/2010-1

Tương tự:

B=2010-1/2010-3

B=2010-3+2/2010-3

B=1+2/2010-3

Vì 2/2010-1<2/2010-3 nên A<B

Chúc bạn học tốt!

Hoàng Thu Hương
Xem chi tiết
Akai Haruma
24 tháng 3 2021 lúc 21:02

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

nguyễn thị minh sang
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 22:40

Lời giải:

$A=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}$

$B=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}$

Vì $20^{10}-1> 20^{10}-3$

$\Rightarrow \frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}$

$\Rightarrow 1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}$

$\Rightarrow A< B$

Lily :3
Xem chi tiết
Nguyễn Thanh Hằng
16 tháng 7 2021 lúc 15:26

\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1}{20^{10}-1}+\dfrac{2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)

\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3}{20^{10}-3}+\dfrac{2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)

\(\dfrac{2}{20^{10}-1}>\dfrac{2}{20^{10}-3}\Leftrightarrow A>B\)

Dương Gia Huy
Xem chi tiết
Akai Haruma
10 tháng 1 2022 lúc 21:56

Lời giải:

$B=\frac{10^{11}+10}{10^{12}+10}$

Đặt $10^{11}-1=a; 10^{12}-1=b$ thì $0< a< b$. Khi đó:

$A-B=\frac{a}{b}-\frac{a+11}{b+11}=\frac{11(a-b)}{b(b+11)}<0$

$\Rightarrow A< B$

 

C
5 tháng 3 lúc 22:14

Dễ vãi

Nguyễn ngọc Khế Xanh
Xem chi tiết
nguyen the phu
1 tháng 4 2021 lúc 20:38

A=-2015/2015x2016

A=-1/2016

B=-2014/2014x2015

B=-1/2015

vi 2016>2015,-1/2016>-1/2015

vay A>B

Nguyễn Lê Phước Thịnh
1 tháng 4 2021 lúc 21:06

b) Ta có: \(A=\dfrac{10^{2009}+1}{10^{2010}+1}\)

\(\Leftrightarrow10A=\dfrac{10^{2010}+10}{10^{2010}+1}=1+\dfrac{9}{10^{2010}+1}\)

Ta có: \(B=\dfrac{10^{2010}+1}{10^{2011}+1}\)

\(\Leftrightarrow10B=\dfrac{10^{2011}+10}{10^{2011}+1}=1+\dfrac{9}{10^{2011}+1}\)

Ta có: \(10^{2010}+1< 10^{2011}+1\)

\(\Leftrightarrow\dfrac{9}{10^{2010}+1}>\dfrac{9}{10^{2011}+1}\)

\(\Leftrightarrow\dfrac{9}{10^{2010}+1}+1>\dfrac{9}{10^{2011}+1}+1\)

\(\Leftrightarrow10A>10B\)

hay A>B

Hồng Phong Đoàn
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 22:45

Lời giải:
$10A=\frac{10^{2021}-10}{10^{2021}-1}=\frac{10^{2021}-1-9}{10^{2021}-1}$

$=1-\frac{9}{10^{2021}-1}>1$

$10B=\frac{10^{2022}+10}{10^{2022}+1}=\frac{10^{2022}+1+9}{10^{2022}+1}$

$=1+\frac{9}{10^{2022}+1}<1$

$\Rightarrow 10A> 1> 10B$

Suy ra $A> B$

Nguyễn Nhất Khoa
Xem chi tiết
Nguyễn Nhất Khoa
20 tháng 3 2023 lúc 12:26

đáng ra là toán lớp 6 đó nhưng mik thích đặt toán lớp 5 :)

 

A = \(\dfrac{10^{1990}+1}{10^{1991}+1}\) ⇒ 10A = \(\dfrac{10^{1991}+10}{10^{1991}+1}\) = \(1+\dfrac{9}{10^{1991}+1}\)

B =  \(\dfrac{10^{1991}+10}{10^{1992}+1}\) ⇒ 10B = \(\dfrac{10^{1992}+10}{10^{1992}+1}\) = 1 + \(\dfrac{9}{10^{1992}+1}\)

Vì \(\dfrac{9}{10^{1991}+1}\) > \(\dfrac{9}{10^{1992}+1}\)

10A > 10B => A > B