\(1,4\cdot\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):2\dfrac{1}{5}\)
\(\sqrt{\dfrac{16}{49}}+\left(\dfrac{1}{2}\right)^3-\left|-\dfrac{4}{7}\right|-\dfrac{7}{8}\)
\(\left|\dfrac{1}{2}-\dfrac{3}{5}\right|\cdot\sqrt{9}+0.5\cdot\left(-2\dfrac{3}{5}\right)\)
\(\sqrt{\dfrac{16}{49}}+\left(\dfrac{1}{2}\right)^3-\left|-\dfrac{4}{7}\right|-\dfrac{7}{8}\)
\(=\dfrac{4}{7}+\dfrac{1}{8}-\dfrac{4}{7}-\dfrac{7}{8}\)
\(=\dfrac{1}{8}-\dfrac{7}{8}=-\dfrac{6}{8}=-\dfrac{3}{4}\)
\(\left|\dfrac{1}{2}-\dfrac{3}{5}\right|\cdot\sqrt{9}+0,5\left(-2\dfrac{3}{5}\right)\)
\(=\left|\dfrac{5-6}{10}\right|\cdot3+\dfrac{1}{2}\cdot\dfrac{-13}{5}\)
\(=\dfrac{1}{10}\cdot3+\dfrac{1}{2}\cdot\dfrac{-13}{5}\)
\(=\dfrac{3}{10}-\dfrac{13}{10}=-\dfrac{10}{10}=-1\)
Tính giá trị của các biểu thức sau 1) \(A=1+2+2^2+...+2^{2015}\) 2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\) 3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\) 4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) 5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\) 6) Cho 13+23+...+103=3025 Tính S= 23+43+63+...+203
CHo `M` `=` \(\dfrac{\left(\dfrac{3}{1\cdot4}+\dfrac{3}{2\cdot6}+\dfrac{3}{3\cdot8}+\dfrac{3}{4\cdot10}+...+\dfrac{3}{49\cdot100}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{1}{6}\right)\cdot\cdot\cdot\left(1-\dfrac{1}{100}\right)}\)
Chứng `M` có giá trị là 1 số nguyên
Hép - mi - pờ - li
1,\(A=\dfrac{-2}{4}+\dfrac{2}{7}-\dfrac{5}{28}\)
2,\(B=\left(\dfrac{5}{7}\cdot0,6-5:3\dfrac{1}{2}\right)\cdot\left(40\%-1,4\right)\cdot\left(-2\right)^3\)
1, \(A=\dfrac{-2}{4}+\dfrac{2}{7}-\dfrac{5}{28}\)
\(A=\dfrac{-1}{2}+\dfrac{2}{7}-\dfrac{5}{28}\)
\(A=\dfrac{-14+8-5}{28}=\dfrac{-11}{28}\)
2, \(B=\left(\dfrac{5}{7}.0,6-5:3\dfrac{1}{2}\right).\left(40\%-1,4\right).\left(-2\right)^3\)
\(B=\dfrac{-13}{14}.\left(-1\right).8=\dfrac{52}{7}\)
1, so sánh A;B biết: A=\(\left(\dfrac{\left(3\cdot\dfrac{2}{15}+\dfrac{1}{5}\right):2\cdot\dfrac{1}{2}}{\left(5\cdot\dfrac{3}{7}-2\cdot\dfrac{1}{4}\right):\dfrac{443}{56}}\right);B=\dfrac{1,2:\left(1\cdot\dfrac{1}{5}.1\cdot\dfrac{1}{4}\right)}{0,32+\dfrac{2}{25}}\)
Tính giá trị biểu thức :
1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)
2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)
4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)
5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)
6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)
7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)
9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)
10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)
11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)
12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)
13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)
14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)
15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)
16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
Tính giá trị của các biểu thức sau
1) \(A=1+2+2^2+...+2^{2015}\)
2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\)
3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\)
6) Cho 13+23+...+103=3025
Tính S= 23+43+63+...+203
Tìm giá trị của biểu thức :
\(A=-1,6:\left(1+\dfrac{2}{3}\right)\)
\(B=1,4.\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):2\dfrac{1}{5}\)
\(A=-1,6:\left(1+\dfrac{2}{3}\right)\)
\(A=\dfrac{-16}{10}:\dfrac{5}{3}\)
\(A=\dfrac{-8}{5}.\dfrac{3}{5}\)
\(A=\dfrac{-24}{25}\)
\(B=1,4.\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):2\dfrac{1}{5}\)
\(B=\dfrac{14}{10}.\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):\dfrac{11}{5}\)
\(B=\dfrac{14}{10}.\dfrac{15}{49}-\dfrac{22}{15}:\dfrac{11}{5}\)
\(B=\dfrac{3}{7}-\dfrac{22}{15}:\dfrac{11}{5}\)
\(B=\dfrac{3}{7}-\dfrac{2}{3}\)
\(B=\dfrac{-5}{21}\)
\(A=-1,6:\left(1+\dfrac{2}{3}\right)\)
\(A=\dfrac{-8}{5}:\left(1+\dfrac{2}{3}\right)\)
\(A=\dfrac{-8}{5}:\dfrac{5}{3}\)
\(A=\dfrac{-24}{25}\)
\(B=1,4.\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):2\dfrac{1}{5}\)
\(B=\dfrac{7}{5}.\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):\dfrac{11}{5}\)
\(B=\dfrac{7}{5}.\dfrac{15}{49}-\dfrac{22}{15}:\dfrac{11}{5}\)
\(B=\dfrac{3}{7}-\dfrac{2}{3}\)
\(B=\dfrac{-5}{21}\)
\(A=-1,6:\left(1+\dfrac{2}{3}\right)\)
\(\Rightarrow A=\dfrac{-8}{5}:\left(1+\dfrac{2}{3}\right)\)
\(\Rightarrow A=\dfrac{-8}{5}:\left(\dfrac{3}{3}+\dfrac{2}{3}\right)\)
\(\Rightarrow A=\dfrac{-8}{5}:\dfrac{5}{3}\)
\(\Rightarrow A=\dfrac{-8}{5}.\dfrac{3}{5}\)
\(\Rightarrow A=\dfrac{-24}{25}\)
\(B=1,4.\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):2\dfrac{1}{5}\)
\(\Rightarrow B=\dfrac{7}{5}.\dfrac{15}{49}-\left(\dfrac{12}{15}+\dfrac{10}{15}\right):\dfrac{11}{5}\)
\(\Rightarrow B=\dfrac{3}{7}-\dfrac{22}{15}.\dfrac{5}{11}\)
\(\Rightarrow B=\dfrac{3}{7}-\dfrac{2}{3}\)
\(\Rightarrow B=\dfrac{9}{21}-\dfrac{14}{21}\)
\(\Rightarrow B=\dfrac{9}{21}+\left(\dfrac{-14}{21}\right)\)
\(\Rightarrow B=\dfrac{-5}{21}\)
tính:
a) \(2\dfrac{3}{4}.\left(-0,4\right)-1\dfrac{3}{5}.2,75+\left(-1,2\right):\dfrac{4}{11}\)
b) \(1,4.\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):2\dfrac{1}{5}\)
c) \(\left(-3,2\right).\dfrac{15}{64}+\left(0,8-2\dfrac{4}{15}\right):3\dfrac{2}{3}\)
d) \(0,02.\dfrac{-25}{2}+\dfrac{3}{8}+\left(-2\dfrac{9}{20}\right).\dfrac{2}{7}\)
e) \(34\%:\dfrac{51}{16}-3\dfrac{7}{9}.6,5-\left(0,4\right)^2\)
Cái này bn lầy máy tính ra tính tí là xong thôi
a) \(2\dfrac{3}{4}.\left(-0,4\right)-1\dfrac{3}{5}.2,75+\left(-1,2\right):\dfrac{4}{11}\)
= \(2,75.\left(-0,4\right)-\left(1,6\right).\left(2,75\right)+\left(-1,2\right).\dfrac{11}{4}\)
= \(2,75.\left(-0,4\right)-\left(1,6\right).\left(2,75\right)+\left(-1,2\right).\left(2,75\right)\)
= \(2,75.\left\{\left(-0,4\right)-\left(1,6\right)+\left(-1,2\right)\right\}\)
= \(2,75.\left(-3,2\right)\)
= \(-8,8\)
b) \(1,4.\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):2\dfrac{1}{5}\)
= \(\dfrac{7}{5}.\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):\dfrac{11}{5}\)
= \(\dfrac{7}{5}.\dfrac{15}{49}-\dfrac{22}{15}.\dfrac{5}{11}\)
= \(\dfrac{3}{7}-\dfrac{2}{3}\)
= \(-\dfrac{5}{21}\)
c) \(\left(-3,2\right).\dfrac{15}{64}+\left(0,8-2\dfrac{4}{15}\right):3\dfrac{2}{3}\)
= \(-\dfrac{16}{5}.\dfrac{15}{64}+\left(\dfrac{4}{5}-2\dfrac{4}{15}\right):\dfrac{11}{3}\)
= \(-\dfrac{16}{5}.\dfrac{15}{64}+\left(-\dfrac{22}{15}\right).\dfrac{3}{11}\)
= \(\left(-\dfrac{3}{4}\right)+\left(-\dfrac{2}{5}\right)\)
= \(-\dfrac{23}{20}\)
d) \(0,02.\dfrac{-25}{2}+\dfrac{3}{8}+\left(-2\dfrac{9}{20}\right).\dfrac{2}{7}\)
= \(\dfrac{1}{50}.\dfrac{-25}{2}+\dfrac{3}{8}+\left(-\dfrac{49}{20}\right).\dfrac{2}{7}\)
=\(\left(-\dfrac{1}{4}\right)+\dfrac{3}{8}+\left(-\dfrac{7}{10}\right)\)
= \(\dfrac{1}{8}+\left(-\dfrac{7}{10}=\right)\)
= \(-\dfrac{23}{40}\)
e) \(34\%:\dfrac{51}{16}-3\dfrac{7}{9}.6,5-\left(0,4\right)^2\)
= \(\dfrac{17}{50}.\dfrac{16}{51}-\dfrac{34}{9}.\dfrac{13}{2}-\dfrac{4}{25}\)
= \(\dfrac{8}{75}-\dfrac{221}{9}-\dfrac{4}{15}\)
= \(-\dfrac{5501}{225}\)