cho a+b=2. cm \(a^2+b^2\ge2\)
Cho a+b+c=3 và a,b,c >0. CM
a, \(\frac{a^4}{b}+\frac{b^4}{a}\ge2\)
b, \(\frac{a^4}{b^2}+\frac{b^2}{a^2}\ge2\)
HELP ME
\(a+b+ab=3\Leftrightarrow a+b+\frac{1}{4}\left(a+b\right)^2\ge3\)
\(\Leftrightarrow\left(a+b\right)^2+4\left(a+b\right)-12\ge0\)
\(\Leftrightarrow\left(a+b+6\right)\left(a+b-2\right)\ge0\)
\(\Leftrightarrow a+b\ge2\)
a/ \(\frac{a^4}{b}+\frac{b^4}{a}\ge\frac{\left(a^2+b^2\right)^2}{a+b}\ge\frac{\left(a+b\right)^4}{4\left(a+b\right)}=\frac{\left(a+b\right)^3}{4}\ge\frac{2^3}{4}=2\)
Dấu "=" xảy ra khi \(a=b=1\)
b/ \(\frac{a^4}{b^2}+\frac{b^4}{a^2}\ge\frac{\left(a^2+b^2\right)^2}{b^2+a^2}=a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\ge\frac{1}{2}.2^2=2\)
Dấu "=" xảy ra khi \(a=b=1\)
Bạn xem lại đề bài, cả 2 câu đều sai
Cho \(a=b=0,5\) ; \(c=2\) sau đó thay a;b vào 2 BĐT đều sai hết
Muốn chứng minh được 2 BĐT này thì điều kiện phải là \(a+b=2\) ; \(a;b>0\) ko liên quan gì tới c ở đây hết
Cho a,b,c >0 sao cho \(a^2+b^2=2\) .CM \(a^3+b^3\ge2\)
\(2=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow a+b\le2\)
\(\left(a^3+b^3\right)\left(a+b\right)\ge\left(a^2+b^2\right)^2=4\)
\(a^3+b^3\ge\dfrac{4}{a+b}\ge\dfrac{4}{2}=2\)
\(a^3+a\ge2a^2\);\(b^3+b\ge2b^2\)
\(a^3+b^3\ge2\left(a^2+b^2\right)-\left(a+b\right)\ge4-\sqrt{2\left(a^2+b^2\right)}=4-2=2\)
các bạn hãy áp dụng bất đẳng thức Cô-si
Cho a>b>0. CM \(a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\)
Có \(a+\frac{1}{b\left(a-b\right)^2}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)^2}=\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b\left(a-b\right)^2}\)
Áp dụng BĐT Cosi cho 4 số ta có:
\(\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b\left(a-b\right)^2}\ge4\sqrt[4]{\frac{a-b}{2}\cdot\frac{a-b}{2}\cdot b\cdot\frac{1}{b\left(a-b\right)^2}}\)
\(=4\cdot\sqrt[4]{\frac{1}{4}}=1\cdot\frac{\sqrt{1}}{2}=2\sqrt{2}\)
\(\Rightarrow a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\)
Dấu "=" xảy ra khi \(\frac{a-b}{2}=b\)
\(\Leftrightarrow\frac{a}{2}=\frac{3b}{2}\Leftrightarrow a=3b\)
Cách giải: Linh Vy. Trình bày: Nhật Quỳnh
Cho các số thực dương a,b. CM BĐT sau :
\(\dfrac{3a^2+2ab+3b^2}{a+b}\ge2\sqrt{2\left(a^2+b^2\right)}\)
BĐT cần chứng minh tương đương
\(\dfrac{3a^2+2ab+3b^2}{a+b}-2\left(a+b\right)\ge2\sqrt{2\left(a^2+b^2\right)}-2\left(a+b\right)\)
\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{a+b}\ge\dfrac{8\left(a^2+b^2\right)-4\left(a+b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{a+b}\ge\dfrac{2\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)
\(\Leftrightarrow\left(a-b\right)^2\left(\dfrac{1}{a+b}-\dfrac{2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\right)\ge0\)
ta phải chứng minh
\(\dfrac{1}{a+b}-\dfrac{2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\ge0\)
\(\Leftrightarrow\dfrac{1}{a+b}\ge\dfrac{2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)
\(\Leftrightarrow\sqrt{2\left(a^2+b^2\right)}+a+b\ge2\left(a+b\right)\Leftrightarrow\sqrt{2\left(a^2+b^2\right)}\ge a+b\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
=> đpcm
\(a)\)\(Cho\) \(a>b,ab=1\)
\(C.m:\)\(\dfrac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
\(b)C.m:\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\)
Cho các số thực dương a,b,c. CM
R \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\left(\frac{a}{c}+\frac{b}{c}+\frac{c}{b}\right)-3\)
cho a,b>0 CM
\(\sqrt{a^2+\frac{1}{b^2}}\)\(+\sqrt{b^2+\frac{1}{a^2}}\)\(\ge2\sqrt{2}\)
Áp dụng bđt AM - GM ta có :
\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{a^2}}\ge\sqrt{2\frac{a^2}{b^2}}+\sqrt{2\frac{b^2}{a^2}}=\sqrt{2}\frac{a}{b}+\sqrt{2}\frac{b}{a}\)
\(=\sqrt{2}\left(\frac{a}{b}+\frac{b}{a}\right)\ge\sqrt{2}.2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\sqrt{2}\)
cho a, b>0 và a+b=1. CM:
\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge2\)
\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge2\)
\(\Leftrightarrow a^2+2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+2\ge2\)
<=> Sai đề
cho 3 số thực a,b,c đôi một phân biệt. CM \(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\ge2\)\(2\)
Đặt \(A=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(b-c\right)\left(a-b\right)}=-1\)
\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)^2\ge0\)
\(\Leftrightarrow\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2+2A\ge0\)
\(\Leftrightarrow\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2\ge2\)
chúc bn học tốt nhớ tích và kb với mk nha ^^