BĐT cần chứng minh tương đương
\(\dfrac{3a^2+2ab+3b^2}{a+b}-2\left(a+b\right)\ge2\sqrt{2\left(a^2+b^2\right)}-2\left(a+b\right)\)
\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{a+b}\ge\dfrac{8\left(a^2+b^2\right)-4\left(a+b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{a+b}\ge\dfrac{2\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)
\(\Leftrightarrow\left(a-b\right)^2\left(\dfrac{1}{a+b}-\dfrac{2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\right)\ge0\)
ta phải chứng minh
\(\dfrac{1}{a+b}-\dfrac{2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\ge0\)
\(\Leftrightarrow\dfrac{1}{a+b}\ge\dfrac{2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)
\(\Leftrightarrow\sqrt{2\left(a^2+b^2\right)}+a+b\ge2\left(a+b\right)\Leftrightarrow\sqrt{2\left(a^2+b^2\right)}\ge a+b\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
=> đpcm