Cho các số a, b, c thuộc N* và
S= a/a+b + b/b+c + c/c+a
Hỏi S có là số tự nhiên k
Cho a,b các số nguyên thỏa mãn a<b;0<b và n =số tự nhiên khác 0
Cho a,b,c số nguyên dương và S=a/a+b +b/b+c + c/c+a
Chứng minh rằng S không có giá trị nguyên
Một số tự nhiên n chia hết cho 9 và là số có 2004 chữ số biết A = S(n) B = S(A) và C = S(B). Tìm S(C)
Chú ý: S(n) = tổng các chữ số của n
S(A) = tổng các chữ số của A
S(B) = tổng các chữ số của B
S(C) = tổng các chữ số của C
Vì n chia hết cho 9 nên S(n) chia hết cho 9 => S(A) chia hết cho 9 => S(B) chia hết cho 9 => S(C) chia hết cho 9.
Vì n là số có 2004 chữ số nên tổng của chúng không bằng 0 => S(C) chỉ có thể bằng 9
Cho các số nguyên dương a, b, c, d
CMR S = a/(a+b+c) + b/(b+c+d) + c/(c+d+a) + d/(d+a+b) k phải là một số tự nhiên
Ta có:
\(\frac{a+d}{a+b+c+d}>\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b+a}{a+b+c+d}>\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c+b}{a+b+c+d}>\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d+c}{a+b+c+d}>\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
\(\Rightarrow\)\(\frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+b}{a+b+c+d}+\frac{d+c}{a+b+c+d}\)\(>S>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(\Rightarrow2>S>1\)
Vậy S không là số tự nhiên
cho a,b,c,d là các số nguyên dương. Chứng tỏ S không phải là số tự nhiên: S=(a/a+b+c )+(b/b+c+d) +(c/c+d+a)+(d/d+a+b)
1/ chứng tỏ rằng : S= 1+ 1/1! +1/2! + 1/3!+...+ 1/2001! < 3
3/ TÌM CÁC SỐ TỰ NHIÊN A, B, C # 0 , SAO CHO: 1/A + 1/B + 1/C = 4/5
4/ TÌM CÁC CHỮ SỐ A, B, C ĐỂ :
A/ 36/AB = A+ B ( AB LÀ SỐ CÓ 2 CHỮ SỐ)
B/ 1000/A+B+C = ABC ( ABC LÀ SỐ CÓ 3 CHỮ SỐ )
5/ CHO PHÂN SỐ A+B/C+D VỚI A,B,C,D THUỘC Z+. BIẾT RẰNG TỬ VÀ MẪU CỦA PHÂN SỐ CÙNG CHIA HẾT CHO K ( K THUỘC N*. CHỨNG TỎ RẰNG : (AD-BC) CHIA HẾT CHO K
6/TÌM NĂM SỐ NGUYÊN SAO CHO MỖI SỐ TRONG CÁC SỐ ĐÓ ĐỀU BẰNG BÌNH PHƯƠNG CỦA TỔNG 4 SỐ CÒN LẠI.
7/TIM X,Y BIẾT: ( XX + YY ) . XY = 1980 ( XX, YY LÀ SỐ CÓ 2 CHỮ SỐ )
8 / TÌM UCLN CỦA SỐ 11111111 VÀ 11...11( 1994 SỐ 1)
Ta có:
\(S=1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{2001!}\)
\(=2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\)
Ta lại có:
\(\frac{1}{2!}=\frac{1}{1.2}\)
\(\frac{1}{3!}
Cho tập hợp A = { x C N!3 < x < 6 } và tập hợp B là số tự nhiên lẻ. Phần tử vừa thuộc A vừa thuộc B là ...
A = { 4 ; 5 ; 6 }
B = { 1 ; 3 ; 5 ; .... }
phần tử vừa thuộc A và B là 5
Kí hiệu S(n) là tổng các chữ số của số tự nhiên n.
a) Hỏi n-S(n) có chia hết cho 3 ko?
b, tính B=1.5+2.6+3.8+......+100.104
c, cho P và P+4 là các số nguyên tố lớn hơn 3.Chứng tỏ P+8 là hợp số.
cho a,b,c là các số tự nhiên biết, S=a+b/c+ b+c/a+ c+a/b
a)Chứng minh rằng S>b
b)tìm giá trị nhỏ nhất của S
1, Có bao nhiêu số tự nhiên từ 1 đến 100 không chia hết cho 3 và không chia hết cho 7?
A. 53; B. 49; C. 57; D. 45
2, Biết 1/1.3 + 1/3.5 + 1/5.7 +...+ 1/99.101 = a/b là một phân số tối giản (a,b∈N). Tính S = a+b
A. S = 2503; B. S = 501; C. S = 151; D. S = 302
Giúp mình hai câu trên với ạ mình cảm ơn.