Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Thùy Linh
Xem chi tiết
Trần Tiến Bảo Nam
Xem chi tiết
Arima Kousei
29 tháng 4 2018 lúc 16:02

\(\frac{1}{1.1}+\frac{1}{1.3}+\frac{1}{3.2}+...+\frac{1}{49.25}\) 

\(=\frac{2}{2}.\left(\frac{1}{1.1}+\frac{1}{1.3}+\frac{1}{3.2}+...+\frac{1}{49.25}\right)\)

\(=\frac{2}{1.1.2}+\frac{2}{1.3.2}+\frac{2}{3.2.2}+...+\frac{2}{49.25.2}\)

\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{49.50}\)

\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=2.\left(1-\frac{1}{50}\right)\)

\(=2.\frac{49}{50}\)

\(=\frac{49}{25}\)

Chúc bạn học tốt !!! 

THÁM TỬ TRUNG HỌC KUDO S...
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
1 tháng 3 2017 lúc 16:58

3) Ta có : \(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

Thanh Tùng DZ
1 tháng 3 2017 lúc 18:25

4)

A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

A = \(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{99}-\frac{1}{101}\right)\)

A = \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

A = \(\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\frac{100}{101}\)

A = \(\frac{50}{101}\)

2, đặt tên biểu thức trên là A. Ta có :

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)

\(A=1-\frac{1}{101}\)

\(A=\frac{100}{101}\)

1) \(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)

\(=1-\frac{1}{5}\)

\(=\frac{4}{5}\)

Đặng Linh Chi
Xem chi tiết
Phạm Mai Lan
Xem chi tiết
Minh Thong Pham
Xem chi tiết
trân võ
Xem chi tiết
Oopsan Thư
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2020 lúc 19:18

Bài 1:

1.1

a) Ta có: \(A=\left(x+y\right)\left(x-y\right)+x\left(2x-1\right)+y\left(y+1\right)\)

\(=x^2-y^2+2x^2-x+y^2+y\)

\(=3x^2-x+y\)

b) Thay x=1 và y=2018 vào biểu thức \(A=3x^2-x+y\), ta được:

\(A=3\cdot1^2-1+2018\)

\(=2+2018=2020\)

Vậy: Khi x=1 và y=2018 thì A=2020

1.2

a) Ta có: \(2x^2\left(x^2-3x+1\right)\)

\(=2x^2\cdot x^2-2x^2\cdot3x+2x^2\cdot1\)

\(=2x^4-6x^3+2x^2\)

b) Ta có: \(\left(2x-1\right)\left(6x^2+3x-3\right)\)

\(=2x\cdot6x^2+2x\cdot3x-2x\cdot3-6x^2-3x+3\)

\(=12x^3+6x^2-6x-6x^2-3x+3\)

\(=12x^3-9x+3\)

1.3

a) Ta có: \(x^3-2x^2+x\)

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

b) Ta có: \(x^2-xy-8x+8y\)

\(=x\left(x-y\right)-8\left(x-y\right)\)

\(=\left(x-y\right)\left(x-8\right)\)

Khách vãng lai đã xóa
Loan Hoàng
30 tháng 10 2020 lúc 19:35

1.1

a) A= (x+y).(x-y) + x(2x-1) + y(y+1)

= x2- x.y + x.y - y2 + 2x2 - x +y2 + y = 3x2 - x + y

b) Ta có A= 3x2 - x + y; thay x=1,y=2018 vào biểu thức:

A= 3.12 - 1+ 2018 = 2020

1.3

a)x3 - 2x2 + x = x.( x2 - 2x + 1) = x.(x-1)2

b) x2 - xy - 8x + 8y = x.(x - y) - 8.(x - y)= (x - y).(x-8).

Xin lỗi nha, tớ không biết làm bài 1.2.

Chúc bạn học tốt!!

Khách vãng lai đã xóa
zZz Hoàng Vân zZz
Xem chi tiết