Cho hpt : mx+y=3
4x+my=6
a) giải hệ khi m=1
b) tìm m để hpt có nghiệm duy nhất (x;y) sao cho x,y nguyên dương
Cho hệ PT \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
a, giải hpt khi m= -1
b, tìm m để hpt vô nghiệm
c, tìm m để hpt có nghiệm duy nhất (x,y) thỏa mãn \(2x-3y=1\)
a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)
=> HPT vô nghiệm
b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )
HPT vô nghiệm
<=> ( * ) vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)
<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2
<=> m = -1
Cho HPT :mx-y=2m và 4x-my=m+6 . Trong trường hợp HPT có nghiệm duy nhất (x;y) , tìm hệ thức liên hệ giữa x;y không phụ thuộc vào m .
Cho hpt:
x+my=m+1 (1)
mx+y=3m-1(2)
a, giải hpt khi m=2
b, tìm m để hệ có nghiệm duy nhất (x,y) sao cho x.y có giá trị nhỏ nhất
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+2y=3\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=1\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\2y=3-x=3-\dfrac{1}{3}=\dfrac{8}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)
Cho hpt: {mx+y=1; 4x+my=2 (m là tham số)
Tìm m để hệ có nghiệm duy nhất thỏa mãn x-y=1
Tìm m để hệ có nghiệm duy nhất thỏa mãn x+y=1
Cho HPT :mx-y=2m và 4x-my=m+6 . Trong trường hợp HPT có nghiệm duy nhất (x;y) , tìm hệ thức liên hệ giữa x;y không phụ thuộc vào m .
a,2x+y+3=0
b,2x-y=3
c,-2x+y=3
d,2x+y=3
Cho hpt : \(\hept{\begin{cases}x+my=2\\mx-2y=1\end{cases}}\)
a) Giải hpt trên khi m = 2
b) Tìm các số nguyên m để hệ có nghiệm duy nhất ( x ; y ) mà x > 0, y < 0
c) tìm các số nguyên m để hệ có nghiệm duy nhất(x ; y) mà x,y là các số nguyên
cho hpt \(\left\{{}\begin{matrix}mx+y=1\\4x+my=2\end{matrix}\right.\)(m là tham số)
1.giải hệ với m là số bất kì
2.tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn: x-y=1
1, Gỉa sử m = 1
Thay m = 1 vào hpt trên ta được
\(\left\{{}\begin{matrix}x+y=1\\4x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
2, Để hệ có nghiệm duy nhất \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)
\(\left\{{}\begin{matrix}m^2x+my=m\\4x+my=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=m-2\\y=1-mx\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{m+2}\\y=1-\dfrac{m}{m+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{m+2}\\y=\dfrac{2}{m+2}\end{matrix}\right.\)
Ta có : \(\dfrac{1}{m+2}-\dfrac{2}{m+2}=1\Rightarrow1-2=m+2\Leftrightarrow-1=m+2\Leftrightarrow m=-3\)(tmđk)
a, Với m = 1
\(\left\{{}\begin{matrix}x+y=1_{\left(1\right)}\\4x+y=2_{\left(2\right)}\end{matrix}\right.\)
Lấy (2) - (1) ta được
\(3x=1\Leftrightarrow x=\dfrac{1}{3};\Rightarrow y=1-x=1-\dfrac{1}{3}=\dfrac{2}{3}\)
Vậy (x,y) = \(\left(\dfrac{1}{3};\dfrac{2}{3}\right)\)
c, no của hệ là
\(\left(\dfrac{-1}{m+2};\dfrac{2m+2}{m+2}\right)\\ Theo.bài:\\ x-y=1\\ \Leftrightarrow\dfrac{-1}{m+2}-\dfrac{2m+2}{m+2}=1\\ \Leftrightarrow-1-2m-2=m+2\\ \Leftrightarrow3m=-5\\ m=\dfrac{-5}{3}\)
Cho hpt:
x+2y=7
x+my=4
tìm m hpt có nghiệm duy nhất thỏa mãn x,y trái dấu
2. Cho hpt:
mx-y=2m
4x-my=6+m
m=? hpt có nghiệm duy nhất thỏa mãn x>0, y>0
Cho hpt :\(\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=3m-1\left(2\right)\end{cases}}\)
a. Giải hpt khi m=1
b. Tìm m để hpt có nghiệm duy nhất mà x=/y/.