Cho tam giác ABC nhọn .Gọi H là trực tâm, AH vuông góc với BC tại F,BH vuông góc với AC tại D ,CH vuông góc với AB tại K .Gọi O là trung điểm của BC lấy E sao cho A là trung điểm của HE.glaf trung diểm của HG
CM. GÓC BEC +GÓC BAC=1800
Cho tam giác ABC vuông tại A ( AB<AC),O là trung điểm của BC . Trên tia đối OA lấy điểm K sao cho OA=OK . VẼ AH vuông góc với BC tại H . Trên tia HC lấy điểm D sao choHD=HA . Đường vuông góc với BC tại D cắt AC tại E . Chứng minh rằng : a; Tam giác ABC = tam giác CKA và OA = 1/2BC ; b, AB = AE ; c, Gọi M là trung điểm của BE . Tính góc CHM
Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC (H∈AC), kẻ CK vuông góc với AB (K ∈ AB)
a, CM: AH = AK
b, Gọi I là giao điểm của BH và CK. CM AI là trung trực của HK
c, Kẻ Bx vuông góc với AB tại B, gọi E là giao điểm của Bx với AC, CM BC là phân giác của góc HBE
d, So sánh CH với CE
kẻ hình với làm giúp mình với ạ
a: Xét ΔAHB vuông ạti H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co
AI chung
AK=AH
=>ΔAKI=ΔAHI
=>IH=IK
=>AI là trung trực của KI
c: góc EBC+góc ABC=90 độ
góc HBC+góc ACB=90 độ
góc ABC=góc ACB
=>góc EBC=góc HBC
=>BC là phân giác của góc HBE
Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B và vuông góc với AC tại C cắt nhau tại K.
a) Tứ giác BKCH là hình gì ? Vì sao ?
b) Giả sử góc BAC = 60 độ. Tính số đo của góc BKC
c) Gọi M là trung điểm của BC. CM: M là trung điểm của HK
d) Đường thẳng vuông góc với BC tại M cắt AK tại O. CM: O cách đều 4 điểm A, B, C, K
e) Gọi G là trọng tâm của tam giác ABC. CM: AH = 2OM và H, G, O thẳng hàng
tên các điểm bn tự đặt nha
a) ta có CK // HB ( do cùng vuông góc với AC)
CH// BK (do cùng vuông góc với AB)
tứ giác BKCH có CK // HB ,CH// BK => BKCH là hbh
b) ta có góc A+B+C+K = 180 (tổng các góc tứ giác)
A+K = 90
K= 30
c) HBH. CHBK có M là trung điểm CB => M cũng là trung điểm của HK
d) ta có AH vuông góc BC, OM vuông góc BC => AH // OM
tam giác AKH có AH//OM, KM=MH =>AO=OK (1)
từ O kẻ OS sao cho SA=SB
tam giác AKB có SA=SB, AO=OK => OS//BK
lại có BK vuông góc AB, OS// BK => OS vuông góc AB hay OS là đường trung trực tam giác ABC
=> OA=OB=OC(2)
từ 1 và 2 => OA=OB=OC=OK
e) ta có OM là đtb tam giác AKH => AH= 2OM
Cho tam giác ABC, trực tâm H. Gọi M là trung điểm của BC,N là trung điểm của AC. Đường vuông góc với BC tại M và đường vuông góc với AC tại N cắt nhau ở O. Trên tia đối của OC lấy điểm K sao cho OK=OC
a) Chứng minh: KB vuông góc với KA; KA vuông góc với AC
b) Chứng minh tứ giác AHBK là hình bình hành
c) Chứng minh rằng: OM=1/2 AH
Giúp em giải bài này với ạ
Cho tam giác ABC có 3 góc nhọn. Đường tròn tâm O đường kính BC cắt AB tại E, cắt AC tại F. Các tia BF cắt CE cắt nhau tại H. CMR:
a) AH vuông góc với BC
b) Gọi K là giao điểm của AH và BC. CMR: FB là phân giác của góc EFK
c) Gọi M là trung điểm của BH. CMR: tứ giác EMKF nt
Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.
Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho
Sắp hết Tết rùi giúp mk vs
ủa r viết ngần đó thì mất bn tg thek
Má ơi sao nó dài
Bìa 1:
Cho tam giác nhọn ABC(AB < AC). Gọi M là trung điểm của BC. Trên tia đối của
tia MA lấy điểm D sao cho M là trung điểm của AD.
a) Chứng minh rằng: AMBA = AMCD.
b) Kẻ AH vuông góc với BC tại H và DK vuông góc với BC tại K. Chứng minh rằng: AH= DK.
c) Tia phân giác của ABC cắt AH và AM lần lượt tại I và E. Tia phân giác của BCD cắt KD và
MD lần lượt tại J và F. Chứng minh rằng: ABIA = ACJD.
d) Chứng minh rằng: I, M, J thẳng hàng.
Cho tam giác ABC có 3 góc nhọn, trực tâm H. Gọi I,P,M lần lượt là trung điểm của AB,AC,BC.
a, IPMB là hình gì?
b, đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D; O là trung điểm của AD. CMR OM vuông góc với BC và 2OM=AH
c, Gọi G là trọng tâm của tam giác ABC. CMR 3 điểm H,G,O thẳng hàng.
Cho tam giác ABC có ba góc nhọn. Kẻ AH vuông góc với BC, lấy điểm D sao cho AB vuông góc với HD tại trung điểm HD, lấy điểm E sao cho AC vuông góc với HE tại trung điểm HE. Gọi I, K lần lượt là giao điểm DE với AB, AC. CMR HA là tia phân giác của góc IHK.