Cho đa thức \(M\left(x\right)=-ax^2+6x-8\)
Tìm hệ số a biết rằng đa thức M(x) có một nghiệm là -2
1. Cho x+ y = 1998. Tính giá trị biểu thức:
x(x +5) + y(y + 5) + 2(xy - 3)
2. Cho đa thức: \(f\left(x\right)=x^2+mx-12\) (m là hằng số)
Tìm các nghiệm của đa thức f(x), biết rằng f(x) có một nghiệm là -3
3. Tìm hệ số a, b, c của đa thức \(P\left(x\right)=ax^2+bx+c\)biết P(2) = -4 và P(x) có hai nghiệm là -1 và -2
cho hai đa thức \(f\left(x\right)=\left(x-1\right)\left(x-3\right)\) và\(g\left(x\right)=x^3-ax^2+bx-3\)
tìm hệ số a,b biết rằng nghiệm của đa thức g(x) cũng là nghiệm của đa thức f(x)
\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)
=> x = 1 và x = 3 là nghiệm của đa thức f(x)
Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
=> nghiệm của đa thức g(x) là x = { 1; 3 }
Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)
\(\Rightarrow-a+b=2\)(1)
Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)
\(\Rightarrow3a-b=8\)(2)
Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10
=> 2a = 10 => a = 5
=> - 5 + b = 2 => b = 7
Vậy a = 5 ; b = 7
(x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
Vậy nghiệm của f(x) là 1 và 3
Nghiệm của g(x) cũng là 1 và 3
Với x=1 ta có g(x)=1+a+b-3=0
=>a+b-2=0
a+b=2
Với x=3 ta có g(x)=27-9a+3b-3=0
=>24-9a+3b=0
=>8-3a+b=0
=>3a-b=8
a=\(\frac{8+b}{3}\)
Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)
Đặt \(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy 2 nghiệm của \(f\left(x\right)\) là 1 và 3.
Vì nghiệm của \(g\left(x\right)\) cũng là nghiệm của \(f\left(x\right)\) hay ngược lại, hay 1 và 3 vào \(g\left(x\right)\), ta được:
\(\hept{\begin{cases}g\left(1\right)=-2-a+b\\g\left(3\right)=24-9a+3b\end{cases}\Leftrightarrow\hept{\begin{cases}-a+b=2\\-9a+3b=-24\end{cases}\Leftrightarrow}\hept{\begin{cases}3\left(-a+b\right)=3.2\\-9a+3b=-24\end{cases}\Leftrightarrow}\hept{\begin{cases}-3a+3b=6\\-9a+3b=-24\end{cases}}}\Rightarrow\left(-3a+3b\right)-\left(-9a+3b\right)=6-\left(-24\right)\Leftrightarrow-3a+3b+9a-3b=6+24\Leftrightarrow6a=30\Leftrightarrow a=5\Rightarrow-5+b=2\Leftrightarrow b=2+5=7\)
Vậy a=5 và b=7
Tìm hệ số a của đa thức M(x)= \(ax^2\)\(+5x\)-\(3\), biết rằng đa thức này có 1 nghiệm là \(\dfrac{1}{2}\)
Nghiệm của đa thức M(x) là \(\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}\) để đa thức M(x) = 0
Thay \(x=\dfrac{1}{2}\), ta có:
\(a.\left(\dfrac{1}{2}\right)^2+5.\dfrac{1}{2}-3=0\\ \Rightarrow\dfrac{1}{4}a+\dfrac{5}{2}=3\\ \Rightarrow\dfrac{1}{4}a=3-\dfrac{5}{2}\\ \Rightarrow\dfrac{1}{4}a=\dfrac{1}{2}\\ \Rightarrow a=\dfrac{1}{2}:\dfrac{1}{4}=2\)
Vậy a = 2. Đa thức M(x) được viết đầy đủ dưới dạng:
\(M\left(x\right)=2x^2+5x-3\)
M(x) có nghiệm là 1/2 nên khi x = 1/2 thì M(x) = 0
\(a\left(\dfrac{1}{2}\right)^2+5.\dfrac{1}{2}-3=0\)
\(\Rightarrow a=2\)
Vậy...
Tìm hệ số a của đa thức \(P\left(x\right)=ax^2+5x-3\) biết rằng đa thức này có một nghiệm là \(\dfrac{1}{2}\) ?
P(x) có nghiệm là tức là P() = 0 do đó :
a = 2
Vậy đa thức P(x) =2x2 + 5x - 3
P(x) có nghiệm là \(\dfrac{1}{2}\) tức là P(\(\dfrac{1}{2}\)) = 0 do đó :
a.\(\dfrac{1}{4}\)+5.\(\dfrac{1}{2}\)−3=0
a.\(\dfrac{1}{4}\)=3−\(\dfrac{5}{2}\)
a.\(\dfrac{1}{4}\)=\(\dfrac{1}{2}\)
a=\(\dfrac{1}{2}\).4
a = 2
Vậy đa thức P(x) =2x2 + 5x - 3
Vậy hệ số a = 2 và đa thức P(x) = 2x2 + 5x – 3
tìm hệ số a của đa thức M(x)=ax^2+5–3 biết rằng đa thức này có một nghiệm là 1/2
Vì đa thức \(M_{\left(x\right)}=ax^2+5-3\) có nghiệm là \(\frac{1}{2}\) nên:
\(M\left(\frac{1}{2}\right)=0\Leftrightarrow a\left(\frac{1}{2}\right)^2+5-3=0\)
\(\Rightarrow a.\frac{1}{4}+2=0\)
\(\Rightarrow a.\frac{1}{4}=-2\)
\(\Rightarrow a=-2\div\frac{1}{4}\)
\(\Rightarrow a=-8\)
Tìm hệ số a của đa thức f(x)=ax^2+5x - 6 biết rằng đa thức này có một nghiệm là x= -2
Ta có f(x)=ax^2+5x-6 (1)
Thay x=-2 vào (1) ta đc
f(-2)=a(-2)^2+5(-2)-6
= 4a-10-6
=4a-16
Mà x=-2 là 1 nghiệm của f(x)
suy ra 4a-16=0
4a=16
a=4
Vậy a=4
tìm hệ số a của đa thức a(x)=ax^2+5x-3 biết rằng đa thức này có một nghiệm là 1\2
Thay \(x=\dfrac{1}{2}\) vào đa thức a(x), ta được:
\(a\cdot\dfrac{1}{4}+\dfrac{5}{4}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{7}{4}\)
hay a=7
Tìm hệ số a của đa thức M(x)=ax2 +5x-3, biết rằng đa thức này co một nghiệm là 1/2
Thay x =\(\frac{1}{2}\)vào đa thức M(x) ta có :
M(x) = a . \(\left(\frac{1}{2}\right)^2\) + 5 . \(\frac{1}{2}\) - 3
=> M(x) = a . \(\frac{1}{4}\)- \(\frac{1}{2}\)
=> M(x) = \(\frac{1}{4}\)a - \(\frac{1}{2}\)
Cho \(\frac{1}{4}\)a - \(\frac{1}{2}\) = 0
=> \(\frac{1}{4}\)a = \(\frac{1}{2}\)
=> a = 2
Vậy hệ số a = 2.
Tìm hệ số a của đa thức M(x)=ax^2+5x-3, biết rằng đa thức này có 1 nghiệm bằng 1/2
THAY X=A/2 VÀO ĐA THỨC TA CÓ
M(X)=a*1/4+5*1/2-3=0
vậy a=2