bài 1: Tìm dư của các phép chia ( bằng phương pháp xét nghiệm ( x3-5x2-4x-1):(x2-3x+2)
bài 1 phân tích các đa thức sau thành nhân tử
a) x2 + 4x +3 b) 16x - 5x2 - 3 c) 2x2 + 7x + 5
d) 2x2 + 3x -5 e) x3 - 3x2 + 1 - 3x f ) x2 - 4x - 5
g) (a2 + 1 )2 - 4a2 h) x3 - 3x2 - 4x + 12 i) x4 + x3 + x + 1
k) x4 - x3 - x2 + 1 l ) (2x + 1 )2 - ( x - 1 )
\(a,=\left(x+1\right)\left(x+3\right)\\ b,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ c,=2x^2+2x+5x+5=\left(2x+5\right)\left(x+1\right)\\ d,=2x^2-2x+5x-5=\left(x-1\right)\left(2x+5\right)\\ e,=x^3+x^2-4x^2-4x+x+1=\left(x+1\right)\left(x^2-4x+1\right)\\ f,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)
Bài 2: Phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức
a)x2-4x+4 b)4x2+4x+1 c)16x2-9y2
d)16-(x+3)2 e)4x2-(3x-1)2 f)x3-y3
g)27+x3 h)x3+6x2+12x+8 i)1-3x+3x2-x3
giúp mình cần gấp ,mn ơi
a) \(=\left(x-2\right)^2\)
b) \(=\left(2x+1\right)^2\)
c) \(=\left(4x-3y\right)\left(4x+3y\right)\)
d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)
e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)
f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)
g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)
h) \(=\left(x+2\right)^3\)
i) \(=\left(1-x\right)^3\)
a/ $=(x-2)^2$
b/ $=(2x+1)^2$
c/ $=(4x-3y)(4x+3y)$
d/ $=(1-x)(x+7)$
e/ $=(-x+1)(5x-1)$
f/ $=(x-y)(x^2+xy+y^2)$
g/ $=(3+x)(9-3x+x^2)$
h/ $=(x+2)^3$
i/ $=(1-x)^3$
Bài 2: Phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức
a)x2-4x+4 b)4x2+4x+1 c)16x2-9y2
d)16-(x+3)2 e)4x2-(3x-1)2 f)x3-y3
g)27+x3 h)x3+6x2+12x+8 i)1-3x+3x2-x3
giúp mình cần gấp ,mn ơi
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(4x^2+4x+1=\left(2x+1\right)^2\)
g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
Bài 2: Thực hiện các phép tính sau:
a)(x3+5x2-2x+1)(x-7)
b)(2x2-3xy+y2)(x+y)
c)(x-2)(x2-5x+1)-x(x2+11)
d)x(1-3x)(4-3x)-(x-4)(3x+5)
\(a,\left(x^3+5x^2-2x+1\right)\left(x-7\right)\\ =x^4-7x^3+5x^3-35x^2-2x^2+14x+x-7\\ =x^4-2x^3-37x^2+15x-7\\ b,\left(2x^2-3xy+y^2\right)\left(x+y\right)\\ =2x^3+2x^2y-3x^2y-3xy^2+xy^2+y^3\\ =2x^3-x^2y-2xy^2+y^3\\ c,\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\\ =x^3-5x^2+x-2x^2+10x--x^3-11x\\ =x^3-7x^2\\ d,x\left(1-3x\right)\left(4-3x\right)-\left(x-4\right)\left(3x+5\right)\\ =x\left(4-15x+9x^2\right)-\left(3x^2-7x-20\right)\\ =4x-15x^2+9x^3-3x^2+7x+20\\ =9x^3-18x^2+11x+20\)
Tìm dư của các phép chia ( bằng phương pháp xét nghiệm) ( x3-x2+7x-6):(x2+x-6)
Thực hiện phép chia:
a) ( 2 x 3 + 5 x 2 - 2x + 3) : (2 x 2 - x +1);
b) ( x 5 + x 3 + x 2 +1) : ( x 3 +1).
Thực hiện phép chia:
1. (-3x3 + 5x2 - 9x + 15) : ( 3x + 5)
2. ( 5x4 + 9x3 - 2x2 - 4x - 8) : ( x-1)
3. ( 5x3 + 14x2 + 12x + 8 ) : (x + 2)
4. ( x4 - 2x3 + 2x -1 ) : ( x2 - 1)
5. ( 5x2 - 3x3 + 15 - 9x ) : ( 5 - 3x)
6. ( -x2 + 6x3 - 26x + 21) : ( 3 -2x )
1: Sửa đề: 3x-5
\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)
2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
=5x^2+14x^2+12x+8
3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)
5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)
BÀI 1. Giải các phương trình sau bằng công thức nghiệm hoặc (công thức nghiện thu gọn). 1) x2 - 11x + 38 = 0 ; 2) 6x2 + 71x + 175 = 0 ; 3) 5x2 - 6x + 27 = 0 ; 4) - 30x2 + 30x - 7,5 = 0 ; 5) 4x2 - 16x + 17 = 0 ; 6) x2 + 4x - 12 = 0 ;
1, \(\Delta=\left(-11\right)^2-4.1.38=121-152=-31< 0\)
\(\Rightarrow\) pt vô nghiệm
2, \(\Delta=71^2-4.6.175=5041-4200=841\)
\(x_1=\dfrac{-71+\sqrt{841}}{2.6}=\dfrac{-71+29}{12}=\dfrac{-42}{12}=-\dfrac{7}{2}\)
\(x_2=\dfrac{-71-\sqrt{841}}{2.6}=\dfrac{-71-29}{12}=\dfrac{-10}{12}=-\dfrac{25}{3}\)
3, \(\Delta=\left(-3\right)^2-5.27=9-135=-126< 0\)
⇒ pt vô nghiệm
4, \(\Delta=15^2-\left(-30\right)\left(-7,5\right)=225-225=0\)
\(\Rightarrow x_1=x_2=\dfrac{-30}{2.\left(-30\right)}=\dfrac{1}{2}\)
5, \(\Delta'=\left(-8\right)^2-4.17=64-68=-4\)
⇒ pt vô nghiệm
6, \(\Delta=4^2-4.1.\left(-12\right)=16+48=64\)
\(x_1=\dfrac{-4+\sqrt{64}}{2.1}=\dfrac{-4+8}{2}=\dfrac{4}{2}=2\)
\(x_2=\dfrac{-4-\sqrt{64}}{2.1}=\dfrac{-4-8}{2}=\dfrac{-12}{2}=-6\)