\(\dfrac{4^5+4^5+4^5+4^5+4^5+4^5}{3^5+3^n}.\dfrac{4.6^5}{2^5.2^5.2^5}=2^n\)
Tính n
Tính:
a) \(\dfrac{5.27^3.4^5}{6^5}:\left(\dfrac{5^5.2^4}{10^4}.\dfrac{2^6.3^4}{6^4}\right)\)
b)\(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
c) \(2+2^2+2^3+...+2^{50}\)
Mọi người giúp mình với ạ. Giúp được câu nào hay câu đấy. Mình cảm ơn.
c) gọi biểu thức là S = 2 + 2\(^2+2^3+.....+2^{50}\)
2S=2\(^2+2^3+2^4+......+2^{50}+2^{51}\)
\(2S-S=S=2^{51}-2\)
b) \(1+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{10}}\)
= \(2+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^9}\)
2S-S=S=(\(2+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^9}\))-( \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\))
bạn tự tìm S nhé
mink làm được như thế đó, phần a mink không muốn nhấn mỏi tay bạn ạ, đừng nghĩ mink ko biết làm nha
a) TICK CHO MÌNH VS\(\dfrac{5.27^3.4^5}{6^5}:\left(\dfrac{5^5.2^4}{10^4}.\dfrac{2^6.3^4}{6^4}\right)=\dfrac{100776960}{7776}:\left(\dfrac{50000}{10000}.\dfrac{5184}{1296}\right)=12960:\left(5.4\right)=12960:20=648\)
Tìm số tự nhiên n, biết rằng:
\(\dfrac {4^{5} + {4^{5}} +{4^{5}} + {4^{5}}}{{3^{5}} + {3^{5}} + {3^{5}}}\) . \(\dfrac{6^{5} + {6^{5}} + {6^{5}} + {6^{5}} + {6^{5}} + {6^{5}} }{2^{5} + 2^{5}} = 2^{n}\)
\(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n\)
\(\Rightarrow\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\)
\(\Rightarrow\dfrac{4^5.4.6^5.6}{3^5.3.2^5.2}=2^n\)
\(\Rightarrow\dfrac{\left(2.2\right)^5.2.2.\left(3.2\right)^5.3.2}{3^5.3.2^5.2}=2^n\)
\(\Rightarrow\dfrac{2^5.2^5.2.2.3^5.2^5.3.2}{3^5.3.2^5.2}=2^n\)
Rút gọn vế trái ta có :
\(2^5.2.2.^5=2^n\)
\(\Rightarrow2^{12}=2^n\)
\(\Rightarrow n=12\) ( Thỏa mãn điều kiện \(n\in N\) )
Vậy n =12
Số tự nhiên n thỏa mãn:
\(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n\)
=>\(\dfrac{4^5\left(1+1+1+1\right)}{3^5\left(1+1+1\right)}.\dfrac{6^5\left(1+1+1+1+1+1\right)}{2^5\left(1+1\right)}=2^n\)
=>\(\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\) =>\(\dfrac{4^6}{3^6}.\dfrac{6^6}{2^6}=2^n\)
=>\(\left(\dfrac{4.6}{3.2}\right)^6=2^n\) =>\(4^6=2^n\) =>\(2^{12}=2^n\) =>n=12.
Thực hiện 1 phép tính
\(\dfrac{1}{4}+\dfrac{-3}{8}\) B,\(\dfrac{2^{10}.3^4}{3^5.2^8}\)
\(0,5.\sqrt{100}-\sqrt{\dfrac{1}{9}}\)
d,\(4\dfrac{5}{9}:\left(\dfrac{-5}{7}\right)+5\dfrac{4}{9}:\left(\dfrac{-5}{7}\right)\)
a) \(\dfrac{1}{4}+\left(-\dfrac{3}{8}\right)=\dfrac{2}{8}+\left(-\dfrac{3}{8}\right)=-\dfrac{1}{8}\)
b)\(\dfrac{2^{10}.3^4}{3^5.2^8}=\dfrac{2^8.2^2.3^4}{3^4.3.2^8}=\dfrac{2^2}{3}=\dfrac{4}{3}\)
c) \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{9}}=\dfrac{5}{10}.10-\dfrac{1}{3}=5-\dfrac{1}{3}=\dfrac{15}{3}-\dfrac{1}{3}=\dfrac{14}{3}\)
d) \(4\dfrac{5}{9}:\left(-\dfrac{5}{7}\right)+5\dfrac{4}{9}:\left(-\dfrac{5}{7}\right)\)
\(=\dfrac{41}{9}:\left(-\dfrac{5}{7}\right)
+\dfrac{49}{9}:\left(-\dfrac{5}{7}\right)\)
\(=\left(\dfrac{41}{9}+\dfrac{49}{9}\right):\left(-\dfrac{5}{7}\right)\)
\(=\dfrac{90}{9}:\left(-\dfrac{5}{7}\right)\)
\(=10:\left(-\dfrac{5}{7}\right)\)
\(=10.\left(-\dfrac{7}{5}\right)\)
\(=-14\)
a) \(\dfrac{5^5}{5^x}=5^{18}\)
b) \(\dfrac{2^{4-x}}{16^5}=32^6\)
c) \(\dfrac{2^{2x-3}}{4^{10}}=8^3.16^5\)
d) \(\dfrac{2^3}{2^x}=4^5\)
e) \(9.5^x=6.5^6+3.5^6\)
f) \(7.2^x=2^9+5.2^8\)
a: \(\dfrac{5^5}{5^x}=5^{18}\)
=>5-x=18
hay x=-13
b: \(\dfrac{2^{4-x}}{16^5}=32^6\)
\(\Leftrightarrow2^{4-x}=\left(2^5\right)^6\cdot\left(2^4\right)^5=2^{30+20}=2^{50}\)
=>4-x=50
hay x=-46
c: \(\dfrac{2^{2x-3}}{4^{10}}=8^3\cdot16^5\)
\(\Leftrightarrow2^{2x-3}=2^9\cdot2^{20}\cdot2^{20}=2^{49}\)
=>2x-3=49
=>2x=52
hay x=26
d: \(\dfrac{2^3}{2^x}=4^5\)
\(\Leftrightarrow2^{3-x}=2^{10}\)
=>3-x=10
hay x=-7
e: \(9\cdot5^x=6\cdot5^6+3\cdot5^6\)
\(\Leftrightarrow9\cdot5^x=9\cdot5^6\)
\(\Leftrightarrow5^x=5^6\)
hay x=6
f: \(7\cdot2^x=2^9+5\cdot2^8\)
\(\Leftrightarrow2^x\cdot7=2^8\cdot7\)
\(\Leftrightarrow2^x=2^8\)
hay x=8
Tính tổng đại số
\(A=\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}-\dfrac{1}{5}-\dfrac{2}{5}-\dfrac{3}{5}-\dfrac{4}{5}+...+\dfrac{1}{10}+\dfrac{2}{10}+...+\dfrac{9}{10}\)
\(B=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}+...+\dfrac{1}{n}+\dfrac{2}{n}+...+\dfrac{n-1}{n}\)\(\left(n\in Z,n\ge2\right)\)
Tìm số nguyên dương n thỏa mãn:
\(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2n\)
Help me please!!!!!
Câu hỏi của Lê Khánh Nhi - Toán lớp 7 - Học toán với OnlineMath sửa n thành x cho sửa cho nó thành lũy thừa luôn
1) 5.2²+ (x+3)=5² 6) 4³ - (x-2)=5²
2) 2³+(x-3²)= 5³-4³ 7) 3⁴+ (x+5)=5.3²
3) 3.2 + (x+5²)=10² 8) 2³.5 - (x+ 3²)=10
4) 2⁶+(5+x)= 3⁴ 9) 3³ - (x+2⁴)=7
5) 5+(x + 3³)= 2⁶ 10) 7² - (15+x)=5.2²
1; 5.22 + (\(x\) + 3) = 52
5.4 + (\(x\) + 3) = 25
20 + (\(x\) + 3) = 25
\(x\) + 3 = 25 - 20
\(x+3\) = 5
\(x\) = 5 - 3
\(x\) = 2
Vậy \(x=2\)
2; 23 + (\(x\) - 32) = 53 - 43
8 + (\(x\) - 9) = 125 - 64
8 + (\(x\) - 9) = 61
\(x\) - 9 = 61 - 8
\(x\) - 9 = 53
\(x\) = 53 + 9
\(x\) = 62
Vậy \(x\) = 62
3; 3.2 + (\(x\) + 52) = 102
6 + (\(x\) + 25) = 100
\(x\) + 25 = 100 - 6
\(x\) + 25 = 94
\(x\) = 94 - 25
\(x\) = 69
Vậy \(x\) = 69
\(l,\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}\)
\(m,\left(3-2\dfrac{1}{3}+\dfrac{1}{4}\right):\left(4-5\dfrac{1}{6}+2\dfrac{1}{4}\right)\)
\(n,F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2008.2010}\)
\(p,F=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
p: \(F=\dfrac{1}{3}\left(\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+\dfrac{3}{9\cdot12}+...+\dfrac{3}{30\cdot33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)
n: \(F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\cdot\dfrac{502}{1005}=\dfrac{1004}{1005}\)
m: \(=\left(3-\dfrac{7}{3}+\dfrac{1}{4}\right):\left(4-\dfrac{31}{6}+\dfrac{9}{4}\right)\)
\(=\dfrac{36-28+3}{12}:\dfrac{48-62+27}{12}\)
\(=\dfrac{11}{13}\)