khi nào đa thức A chia hết cho đa thức B
tìm n thuộc z để A chia hết cho B . Biết A= -6xny7:B= x3yn
Khi nào đa thức A chia hết cho đa thức B.
Tìm n thuộc N để a chia hết cho B, biết: A= -6x*n.y*7, B= x*3.y*n?
a, Tìm a để đa thức x^3 + x^2-x+a chia hết cho đa thức x+2
b,Tìm a và b để đa thưac x^3+ ax^2+ 2x+b chia hết cho đa thức x^2+x+1
c, Tìm n thuộc Z để gt bt n^3+ n^2-n +5 chi hết cho gt bt n+2
a) Áp dụng định lý Bézout ( Bê-du ) , dư của \(f\left(x\right)=x^3+x^2-x+a\)cho x + 2 = x - (-2) là \(f\left(-2\right)\)
Để f(x) chia hết cho x + 2 thì f(-2)=0
\(\Rightarrow\left(-2\right)^3+\left(-2\right)^2-\left(-2\right)+a=0\)
\(-8+4+2+a=0\)
\(a-2=0\)
\(a=2\)
Vậy ...
c) \(\frac{n^3+n^2-n+5}{n+2}=\frac{n^3+2n^2-n^2-2n+n+2+3}{n+2}\)nguyên để \(n^3+n^2-n+5⋮n+2\)
\(\Rightarrow\frac{n^2\left(n+2\right)-n\left(n+2\right)+\left(n+2\right)+3}{n+2}\in Z\)
\(\Rightarrow n^2-n+1+\frac{3}{n+2}\in Z\)
\(n^2,n,1\in Z\Rightarrow\frac{3}{n+2}\in Z\)
\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-1;1\right\}\)
Vậy ...
b) Làm tính chia :
\(\Rightarrow-ax+b-a+1=0\)
Tìm a để đa thức: X²+X²+A-X chia hết cho (X+1)².
Tìm m để đa thức A(x)=x³-3x²+5x+m chia hết cho đa thức B(x)=x-2
Tìm n € Z để 2n²-n+2 chia hết cho n+1
a) đề x3+x2-x +a chia hét cho (x-1)2 ?
x3+x2-x +a=x(x2-2x+1)+3(x2-2x+1)+4x-3+a đề sai nhé
b)A(2)=0=> 8-12+10+m=0 => m=6
c)2n2-n+2=2n(n+1)-3(n+1) +5 chia het cho n+1 khi n+1 là ước của 5
n+1=-1;1;-5;5
n=-2;0;-6;4
a/ Tìm số a để đa thức 2x³ -3x² + x + a chia hết cho đa thức x + 2 . . b/ Tìm n a/ Tìm số a để đa thức 2x³ 3x² + x + a chia hết cho đa thức x + 2 b/ Tìm n e Z để 2n² – n + 2 chia hết cho 2n +1\(\in\) Z để 2n² – n + 2 chia hết cho 2n +1
Bài 1.Tìm a để đa thức A chia hết cho B:
A = x^3 + 3x^2 + 5x + a ; B = x + 3.
Bài 2.Tìm x thuộc Z để đa thức A chia hết cho B:
A = 4x^3 + 11x^2 + 5x + 5 ; B = x + 2
Bài 1 :
a) Xác định a để đa thức 10x2 -7x + a chia hết cho đa thức 2x - 3 ?
b) Tìm n thuộc Z để 2n2 + 5n - 1 chia hết cho 2n - 1
a: \(\dfrac{A}{B}=\dfrac{x^3+4x^2+3x+12-19}{x+4}=x^2+3+\dfrac{-19}{x+4}\)
b: Để A chia hết cho B thì \(x+4\in\left\{1;-1;19;-19\right\}\)
=>\(x\in\left\{-3;-5;15;-23\right\}\)
Khi nào thì đơn thức A chia hết cho đơn thức B ?
Khi nào thì đa thức A chia hết cho đơn thức B ?
Khi nào thì đa thức A chia hết cho đa thức B ?
Đơn thức A chia hết cho đơn thức B khi mỗi biến trong B cũng là mỗi biến trong A với số mũ không lớn hơn số mũ của nó trong A.
Đa thức A chia hết cho đơn thức B khi mỗi hạng tử trong A đều chia hết cho đơn thức B.
Đa thức A chia hết cho đa thức B khi tìm được đa thức Q sao cho A= B.Q
Tìm các hệ số a, b và c biết:
a) Đa thức x 3 +2ax + b chia hết cho đa thức x - 1 còn khi chia cho đa thức x + 2 được dư là 3.
b) Đa thức a x 3 + b x 2 + c khi chia cho đa thức x dư - 3 còn khi chia cho đa thức x 2 - 4 được dư là 4x - 11.