Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị My
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2021 lúc 15:53

Kẻ đường cao BD ứng với AC. Do góc A tù \(\Rightarrow\) D nằm ngoài đoạn thẳng AC hay \(CD=AD+AC\) và \(\widehat{DAB}=180^0-120^0=60^0\)

Áp dụng định lý Pitago:

\(AB^2=BD^2+AD^2\) \(\Rightarrow BD^2=AB^2-AD^2\)

Trong tam giác vuông ABD:

\(cos\widehat{BAD}=\dfrac{AD}{AB}\Rightarrow\dfrac{AD}{AB}=cos60^0=\dfrac{1}{2}\Rightarrow AD=\dfrac{1}{2}AB\)

\(\Rightarrow BD^2=AB^2-\left(\dfrac{1}{2}AB^2\right)=\dfrac{3}{4}AB^2\)

Pitago tam giác BCD:

\(BC^2=BD^2+CD^2=\dfrac{3}{4}AB^2+\left(AD+AC\right)^2\)

\(=\dfrac{3}{4}AB^2+\left(\dfrac{1}{2}AB+AC\right)^2\)

\(=\dfrac{3}{4}AB^2+\dfrac{1}{4}AB^2+AB.AC+AC^2\)

\(=AB^2+AB.AC+AC^2\)

Hay \(a^2=b^2+c^2+bc\)

Nguyễn Việt Lâm
17 tháng 9 2021 lúc 15:54

undefined

PHẠm XUÂN Trường
Xem chi tiết
Trần Việt Hoàng
28 tháng 1 2016 lúc 18:00

hệ thức là gì?mình còn chẳng bít đẳng thức là gì nè

HOANGTRUNGKIEN
28 tháng 1 2016 lúc 18:02

kho

GTA Vice City
28 tháng 1 2016 lúc 18:02

ko biết đừng có trả lời linh tinh ~~

tơn nguyễn
Xem chi tiết
Trần Minh Hoàng
18 tháng 1 2021 lúc 23:01

Gọi G là giao điểm của AM và BN.

Theo công thức tính độ dài đường trung tuyến: \(AM^2=\dfrac{2b^2+2c^2-a^2}{4}\);

\(BN^2=\dfrac{2c^2+2a^2-b^2}{4}\).

Từ đó \(AG^2=\dfrac{4}{9}AM^2=\dfrac{2b^2+2c^2-a^2}{9}\)\(BG^2=\dfrac{4}{9}BN^2=\dfrac{2c^2+2a^2-b^2}{9}\).

Do đó \(AG^2+BG^2=\dfrac{a^2+b^2+4c^2}{9}=\dfrac{9c^2}{9}=c^2=AB^2\).

Theo định lý Pythagoras đảo thì tam giác AGB vuông tại G.

Vậy góc giữa 2 trung tuyến AM và BN là 90o.

Trang Lê
Xem chi tiết
hoang phuc lam
Xem chi tiết
PTN (Toán Học)
17 tháng 2 2020 lúc 19:00

a,Ta có : ABC^+BAC^+BCA^=180* ( đl tổng 3 góc )

=> 90*+BAC^+30*=180*

=>BAC^=180*-120*=60* 

Do AM là tia p/g của BAC^

=> BAM^=MAN^=60*/2=30*

Xét tam giác vuông ABM và tam giác vuông ANM 

AM cạnh chung

BAM^=MAN^

=>tam giác ABM = tam giác ANM ( ch-gn )

=>AB=AN (2 cạnh tương ứng)

b,Xét tam giác vuông IBM và tam giác vuông CNM 

BMI^=NMC^ ( đối đỉnh )

BM = NM ( cm câu a )

=> tam giác IBM = tam giác CNM ( cgv-gn )

c, Ta có : BMI^ + MBI^ + BIM ^ = 180*

=>BMI^ + 90* + 30* = 180* 

=> BMI^=180*-120*=60*

Do BMI^=CMN^

=>BMI^=CMN^=60*

Lại có IMN^=180* ( góc bẹt )

Mà : IMC^+CMN^=180*

=>IMC^=180*-60*=120* 

Mặt khác : IM=MC (cm câu b)

=> tam giác IMC cân tại M

=>MIC^=MCI^ 

dễ thấy : IMC^+MIC^+MCI^=180*

=>MIC^+MCi^=180*-120*=60*

do :MIC^=MCI^

=>MIC^=MCI^=60*/2=30*

Ta có :+)AIC^=BIM^+CIM^=30*+30*=60*

           +)ACI^=NCM^+MCI^=30*+30*=60*

           +)IAC^=60*

=>tam giác IAC là tam giác đều

Khách vãng lai đã xóa
Anh Nguyễn Phú
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2022 lúc 19:58

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

\(\widehat{ABE}=\widehat{DBE}\)

Do đó: ΔBAE=ΔBDE

Suy ra: BA=BD; EA=ED

c: Xét ΔAEK vuông tại A và ΔDEC vuông tại D có

EA=ED

\(\widehat{AEK}=\widehat{DEC}\)

Do đó:ΔAEK=ΔDEC

Suy ra: EK=EC

Phương Thảo
Xem chi tiết
Aki Tsuki
11 tháng 12 2016 lúc 21:54

Bài 1: Ta có hình vẽ sau:

B A C M E

a)Xét ΔABM và ΔECM có:

BM = CM (gt)

\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)

MA = ME (gt)

=> ΔABM = ΔACM (c.g.c) (đpcm)

b) Vì ΔABM = ΔECM (ý a)

=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên

=> AB // CE (đpcm)

Bài 5: Ta có hình vẽ sau:

 

 

 

 

O A B D C x y E

a) Vì OA = OB (gt) và AC = BD (gt)

=> OC = OD

Xét ΔOAD và ΔOBC có:

OA = OB (gt)

\(\widehat{O}\) : Chung

OC = OD (cm trên)

=> ΔOAD = ΔOBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)(đpcm)

b) Vì ΔOAD = ΔOBC(ý a)

=> \(\widehat{OBC}=\widehat{OAD}\)\(\widehat{ODA}=\widehat{OCB}\)

(những cặp góc tương ứng)

Xét ΔEAC và ΔEBD có:

\(\widehat{OBC}=\widehat{OAD}\) (cm trên)

AC = BD (gt)

\(\widehat{ODA}=\widehat{OCB}\) (cm trên)

=> ΔEAC = ΔEBD (g.c.g) (đpcm)

c) Vì ΔEAC = ΔEBD (ý b)

=> EA = EB (2 cạnh tương ứng)

Xét ΔOAE và ΔOBE có:

OA = OB (gt)

\(\widehat{OBC}=\widehat{OAD}\) (đã cm)

EA = EB (cm trên)

=> ΔOAE = ΔOBE (c.g.c)

=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)

=> OE là phân giác của \(\widehat{xOy}\)

 

caikeo
18 tháng 2 2018 lúc 22:38

a) Vì OA = OB (gt) và AC = BD (gt)

=> OC = OD

Xét ΔOAD và ΔOBC có:

OA = OB (gt)

OˆO^ : Chung

OC = OD (cm trên)

=> ΔOAD = ΔOBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)(đpcm)

b) Vì ΔOAD = ΔOBC(ý a)

=> OBCˆ=OADˆOBC^=OAD^ODAˆ=OCBˆODA^=OCB^

(những cặp góc tương ứng)

Xét ΔEAC và ΔEBD có:

OBCˆ=OADˆOBC^=OAD^ (cm trên)

AC = BD (gt)

ODAˆ=OCBˆODA^=OCB^ (cm trên)

=> ΔEAC = ΔEBD (g.c.g) (đpcm)

c) Vì ΔEAC = ΔEBD (ý b)

=> EA = EB (2 cạnh tương ứng)

Xét ΔOAE và ΔOBE có:

OA = OB (gt)

OBCˆ=OADˆOBC^=OAD^ (đã cm)

EA = EB (cm trên)

=> ΔOAE = ΔOBE (c.g.c)

=> AOEˆ=BOEˆAOE^=BOE^ (2 góc tương ứng)

=> OE là phân giác của xOyˆ

thu bui
Xem chi tiết
nguyen phuc
Xem chi tiết
Thu Thao
11 tháng 12 2020 lúc 20:32

Bạn kiểm tra lại đề câu cuối!

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 5 2019 lúc 14:29

ΔADB = ΔADC ( câu a )

Suy ra AB = AC (hai cạnh tương ứng)