cho ΔABC, điểm M nằm tỏng tam giác. BM cắt AC tại I. Chứng minh: MA+MB+MC<AB+AC+BC
Cho ΔABC có điểm M nằm trong tam giác. Kéo dài BM cắt AC ở D.
a) Chứng minh : MB +MC < DB + DC.
b) So sánh : DB +DC và AB + AC.
c) Chứng minh : MB +MC < AB + AC
d) So sánh : MA + MB +MC và AB + AC + BC.
a) Xét \(\Delta DMC\) ta có: \(MD+DC>MC\)
\(\Rightarrow MB+MD+DC>MB+MC\)
\(\Rightarrow DB+DC>MB+MC\)
b) Xét \(\Delta ABD\)ta có: \(AB+AD>DB\)
\(\Rightarrow AB+AD+DC>DB+DC\)
\(\Rightarrow AB+AC>DB+DC\)
hihi mới nghĩ ra thế thôi =))
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC
c)Gọi I là giao điểm của BM và AC.
Áp dụng bất đẳng thức tam giác vào ΔIMC ta có: MC<MI+IC (1)
Cộng MB vào hai vế (1) ta được: MC+MB<MI+IC+MB
⇒MC+MB<MI+MB+IC
⇒MC+MB<IB+IC (2)
d)Áp dụng bất đẳng thức tam giác vào ΔIBA ta có: IB<IA+AB (3)
Cộng IC vào hai vế (3) ta được: IB+IC<IA+AB+IC
⇒ IB+IC<IA+IC+AB
⇒IB+IC<AC+AB (4)
e)Từ (2) và (4) suy ra MB+MC<AB+AC
f)Áp dụng bđt tam giác, ta có:
AB+AI > BI = MB+MI, CI + MI > MC
=> AB + AI + CI + MI > MB + MI + MC
Mà AI + CI = AC
=> AB + AC > MB + MC [1]
Áp dụng bđt tam giác, ta cũng có:
BA + BC > MA + MC [2],
CA + CB > MA + MB [3]
Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC
=> MA + MB + MC < AB + AC + BC (đpcm)
a) Xét ΔBMC ta có: MB + MC > BC (bất đẳng thức tam giác)
b)
*Xét ΔABM ta có: AM + BM > AB (1)
*Xét ΔACM ta có: AM + CM > AC (2)
*Xét ΔBMC ta có: BM + CM > BC (3)
Từ (1); (2); (3)
=> AM + BM + AM + CM + BM + CM > AB + AC + BC
=> 2. AM + 2. BM + 2. CM > AB + AC + BC
=> 2. (AM + BM + CM) > AB + AC + BC
Hay: 2. (MA + MB + MC) > AB + BC + CA
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC
a) Xét ΔBMC ta có: MB + MC > BC (bất đẳng thức tam giác)
b)
*Xét ΔABM ta có: AM + BM > AB (1)
*Xét ΔACM ta có: AM + CM > AC (2)
*Xét ΔBMC ta có: BM + CM > BC (3)
Từ (1); (2); (3)
=> AM + BM + AM + CM + BM + CM > AB + AC + BC
=> 2. AM + 2. BM + 2. CM > AB + AC + BC
=> 2. (AM + BM + CM) > AB + AC + BC
Hay: 2. (MA + MB + MC) > AB + BC + CA
c)Gọi I là giao điểm của BM và AC.
Áp dụng bất đẳng thức tam giác vào ΔIMC ta có: MC<MI+IC (1)
Cộng MB vào hai vế (1) ta được: MC+MB<MI+IC+MB
⇒MC+MB<MI+MB+IC
⇒MC+MB<IB+IC (2)
d)Áp dụng bất đẳng thức tam giác vào ΔIBA ta có: IB<IA+AB (3)
Cộng IC vào hai vế (3) ta được: IB+IC<IA+AB+IC
⇒ IB+IC<IA+IC+AB
⇒IB+IC<AC+AB (4)
e)Từ (2) và (4) suy ra MB+MC<AB+AC
f)Áp dụng bđt tam giác, ta có:
AB+AI > BI = MB+MI, CI + MI > MC
=> AB + AI + CI + MI > MB + MI + MC
Mà AI + CI = AC
=> AB + AC > MB + MC [1]
Áp dụng bđt tam giác, ta cũng có:
BA + BC > MA + MC [2],
CA + CB > MA + MB [3]
Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC
=> MA + MB + MC < AB + AC + BC (đpcm)
Cho tam giác ABC , điểm M nằm bên trong tam giác ABC . BM cắt AC tại D . Chứng minh rằng : MA +MB +MC <AB +AC +BC
\(\left\{{}\begin{matrix}MA< AC\\MC< AC\\MA+MC< 2AC\\\end{matrix}\right.\) tương tự canh con lai\(\left\{{}\begin{matrix}MA+MC< 2AC\\MC+MB< 2BC\\MA+MB< 2AB\\2\left(MA+MB+MC\right)< 2\left(AB+BC+AC\right)\end{matrix}\right.\)
Cho tam giác ABC có M nằm trong tam giác. BM cắt AC tại I.
a) C/m MA+MB < IA+IB.
b) C/m IA+IB<CA+CB.
c) C/m MA+MB+MC<AB+AC+BC.
a) xét tam giác MIA có: MA < MI+IA (bđt tam giác)
=> MA+MB < MI+IA+MB
=> MA+MB < (MI+MB)+IA
=> MA+MB < IB+IA (1)
b) xét tam giác BIC có: IB < IC+CB (bđt tam giác)
=> IB+IA < IC+CB+IA
=> IB+IA < (IC+IA)+CB
=> IB+IA < CA+CB (2)
c) từ (1) và (2) => MA+MB < CA+CB
Cho tam giác ABC có M nằm trong tam giác. BM cắt AC tại I.
a) C/m MA+MB < IA+IB.
b) C/m IA+IB<CA+CB.
c) C/m MA+MB+MC<AB+AC+BC.
Cho tam giác ABC , đường trung tuyến BD và CE cắt tại G, biết BD=CE
a) Chứng minh AG vuông góc với BC
b) Cho M là một điểm nằm trong tam giác.
chứng minh : MA + MB + MC > AB + BC+ AC : 2
cho ΔABC vuông tại A (AB<AC), tia phân giác của góc B cắt AC tại M.Trên tia đối của tia MB lấyđiểm D sao cho MB=MD,từ điểm D vẽ đường thẳng vuông góc với AC tại N và cắt BC tại điểm E
a)chứng minh △ABM=△NDM
b)chứng minh △EBD cân
c)chứng minh MA<Mc
d)chững minh BM là trung trực của AH
h)M là tâm đường tròn đi qua 3 đỉnh
(KO CẦN VẼ HÌNH Ạ ,CHỈ CẦN GIẢI ĐỀ THÔI)
a: Xét ΔABM vuông tại A và ΔNDM vuông tại N có
MB=MD
góc AMB=góc NMD
=>ΔABM=ΔNDM
b: góc EDB=góc ABD
=>góc EDB=góc EBD
=>ΔEBD cân tại E
c: MA=MN
MN<MC
=>MA<MC
Cho tam giác ABC có điểm M nằm trong tam giác. BM cắt AC ở D.
a, Chứng minh: MB+MC < DB+DC
b, So sánh: DB+DC và AB+AC
c, Chứng minh: MB+MC < AB+AC
d, So sánh: MA+MB+MC và AB+AC+BC
help me ~