cho a+ b = 1 . chứng minh a.b >= 1/4
cho ƯCLN(a,b)=1
chứng minh:
a)ƯCLN(a,a.b)=1 với a>b
b)ƯCLN(a.b,a+b)=1
Cho a,b là hai số tự nhiên. Biết rằng a:4 dư 2 và b:4 dư 1. Chứng minh rằng a.b:4 dư 2
theo đề a chia 4 dư 2 nên a có dạng 4k+2
b chia 4 dư 1 nên b có dạng 4n+1 (với k và n là các số thuộc N)
ta có a.b= (4k+2)(4n+1)=16kn+8n+4k+2= 4(4kn+2n+k)+2
vì 4 chia hết cho 4 nên 4.(4kn+2n+k) chia hết cho 4. suy ra 4(4kn+2n+k)+2 chia 4 dư 2 hay a.b chia 4 dư 2
Cho (a,b)=1
Chứng minh (a.b , a+b) = 1
phẩy là sao ??????
Tiểu học không biết đừng nói. Bài lớp 6 đấy
anh cho em hỏi phẩy là cái gì ạ ??????/
2.Cho biểu thức P=(a+b+c).(a.b+b.b+a.c)-2.a.b (với a;b;c thuộc Z).Chứng minh nếu a+b+c chia hết cho 4 thì P chia hết cho 4
3. Cho 3 số nguyên a;b;c thỏa mãn a^2+b^2=c^2.Chứng minh :
Câu a:a.b.c chia hết cho 3
Câu b:a.b.c chia hết cho 12
4.Cho p là số nguyên tố >7.Chứng minh 3^p-2^p-1 chia hết cho 42.p
5.Chứng minh với mọi STN thì n^3-n+2 không chia hết cho 6
Cho (a,b)=1
Chứng minh (a.b , a+b) = 1
phẩy là gì ? nói đi biết đâu t làm được
Ta có:
a \(⋮\) 1
b\(⋮\) 1
=> a+b \(⋮\) 1
=> a.b \(⋮\) 1
Cho biểu thức P=(a+b+c).(a.b+b.c+a.c)-2.a.b(vs a;b;c thuộc Z).Chứng minh nếu a+b+c chia hết cho 4 thì P chia hết cho 4
Cho a, b là hai số tự nhiên,biết a chia 4 dư 2 và b chia 4 dư 1. Chứng minh \(\dfrac{a.b}{4}\) dư 2
a : 4 dư 2 \(\Rightarrow a=4k+2\left(k\ge0\right)\left(1\right)\)
b : 4 dư 1 \(\Rightarrow b=4k_1+1\left(k_1\ge0\right)\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow ab=\left(4k+2\right)\left(4k_1+1\right)\)
\(\Rightarrow ab=16kk_1+8k_1+4k+2\)
\(\Rightarrow ab=4\left(4kk_1+2k_1+k\right)+2\)
\(\Rightarrow ab:4\) dư 2 \(\left(đpcm\right)\)
Cho 2 số hữu tỉ a và b thỏa mãn a+b=a.b =a/b Chứng minh a/b=a-1
a+b = a.b = a/b
Cho a/b = a-1
=> a+b = a-1 = a.b = a/b
=> a+(-1) = a+b = a.b = a/b
=> b = -1
a-1 = a.b = a/b
Chúc bạn học tốt!!!
Tick cho mình nha
Chứng minh rằng: \(a^2+b^2\ge2.a.b.\)
Áp dụng cho \(A=\left(a+1\right).\left(b+1\right)\)trong đó \(a.b=1\)(trong đó a > 0, b > 0). Chứng minh rằng: \(A\ge4\)
Có : (a-b)^2 >= 0
<=> a^2-2ab+b^2 >= 0
<=> a^2-2ab+b^2+2ab >= 0 + 2ab
<=> a^2+b^2 >= 2ab
Áp dụng bđt trên thì A >= \(2\sqrt{a.1}+2\sqrt{b.1}\) = \(2\sqrt{a}+2\sqrt{b}\)>= \(2\sqrt{2\sqrt{a}.2\sqrt{b}}\)
= \(2\sqrt{4.\sqrt{ab}}\)= \(2\sqrt{4.1}\)= 4
=> ĐPCM
Dấu "=" xảy ra <=> a=b=1
Tk mk nha