Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Lê Thiên Đức
Xem chi tiết
TFBoys
Xem chi tiết
tnt
Xem chi tiết
Nguyễn Bá Huy h
Xem chi tiết
Đặng Ngọc Quỳnh
3 tháng 6 2021 lúc 18:58

Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)

Theo bài ra, ta có:

 x+y+z=3

\(bđt\Leftrightarrow\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)

Áp dụng kĩ thuật Cau-chy ngược dấu ta có:

\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)

Dấu '=' xảy ra <=> a=3;b=2;c=1

Khách vãng lai đã xóa
Thanh Nguyen Phuc
3 tháng 6 2021 lúc 20:51

*Bài khá giống bạn kia :)

Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)

\(\Rightarrow x+y+z=3\)

BĐT cần chứng minh trở thành :

\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)

Áp dụng kĩ thuật Cô Si ngược dấu ta có :

\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)

Dấu đẳng thức xảy ra \(\Leftrightarrow a=3;b=2;c=1\) 

Khách vãng lai đã xóa
dinh huong
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 8 2021 lúc 21:54

\(\dfrac{1}{\left(a+b+a+c\right)^2}\le\dfrac{1}{4\left(a+b\right)\left(a+c\right)}=\dfrac{1}{4\left(a^2+ab+bc+ca\right)}\le\dfrac{1}{64}\left(\dfrac{1}{a^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)

\(\le\dfrac{1}{64}\left(\dfrac{1}{a^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=\dfrac{1}{64}\left(\dfrac{2}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)

Tương tự và cộng lại:

\(P\le\dfrac{1}{64}\left(\dfrac{4}{a^2}+\dfrac{4}{b^2}+\dfrac{4}{c^2}\right)=\dfrac{1}{16}.3=\dfrac{3}{16}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

 

Lấp La Lấp Lánh
24 tháng 8 2021 lúc 21:57

Áp dụng bđt: \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(1\right)\)

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\)

\(\Rightarrow P\le\dfrac{1}{16}\left[\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)^2+\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)^2+\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)^2\right]\)\(\Rightarrow16P\le\dfrac{2}{\left(a+b\right)^2}+\dfrac{2}{\left(b+c\right)^2}+\dfrac{2}{\left(a+c\right)^2}+\dfrac{2}{\left(a+b\right)\left(b+c\right)}+\dfrac{2}{\left(a+b\right)\left(b+c\right)}+\dfrac{2}{\left(b+c\right)\left(c+a\right)}\)

Áp dụng: \(x^2+y^2+z^2\ge xy+yz+xz\left(2\right)\) với a+b=x,b+c=y,c+a=z

\(\Rightarrow16P\le\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}\)

Ta có: \(\dfrac{1}{\left(a+b\right)^2}\le4.16.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)(do (1))

\(\Rightarrow16P\le\dfrac{1}{4}.16\left[\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\left(\dfrac{1}{b}+\dfrac{1}{c}\right)^2+\left(\dfrac{1}{c}+\dfrac{1}{a}\right)^2\right]=\dfrac{1}{4}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\right)\le\dfrac{1}{4}.4.\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=3\)(do(2) và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\))

\(\Rightarrow P\le\dfrac{3}{16}\)

\(ĐTXR\Leftrightarrow a=b=c=1\)

 

Aocuoi Huongngoc Lan
Xem chi tiết
Tạ Uyên
6 tháng 11 2022 lúc 8:58

Tạ Uyên
6 tháng 11 2022 lúc 11:09

Kimian Hajan Ruventaren
Xem chi tiết
tnt
Xem chi tiết
Lê Song Phương
12 tháng 5 2023 lúc 22:25

Đặt \(P=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)

\(P=\dfrac{\left(abc\right)^2}{a^3\left(b+c\right)}+\dfrac{\left(abc\right)^2}{b^3\left(c+a\right)}+\dfrac{\left(abc\right)^2}{c^3\left(a+b\right)}\)

\(P=\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ca\right)^2}{b\left(c+a\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\)

\(P\ge\dfrac{\left(bc+ca+ab\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\) (BĐT B.C.S)

\(=\dfrac{ab+bc+ca}{2}\) \(\ge\dfrac{3\sqrt[3]{abbcca}}{2}=\dfrac{3}{2}\) (do \(abc=1\)).

ĐTXR \(\Leftrightarrow a=b=c=1\)

Yu gi Oh Magic
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 6 2021 lúc 9:40

Đề bài sai với \(a=b=c=2\)

Ngô Bá Hùng
28 tháng 6 2021 lúc 9:43

đề đúng nhớ áp dụng AM-GM

Ngô Bá Hùng
28 tháng 6 2021 lúc 9:50

AD bđt AM-GM cho 3 số

\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+C}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c}{a^3\left(b+c\right)}.\dfrac{\left(b+c\right)}{4bc}.\dfrac{1}{2b}}=\dfrac{3}{2a}\)

\(\Rightarrow\dfrac{b^2c}{a^3\left(b+c\right)}\ge\dfrac{3}{2a}-\dfrac{3}{4b}-\dfrac{1}{4c}\)

thiết lập bđt tương tự r cộng lại \(\Rightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\left(\dfrac{3}{2}-\dfrac{3}{4}-\dfrac{1}{4}\right)\left(a+b+c\right)=\dfrac{1}{2}\left(a+b+c\right)\)