Với mọi a,b>0 và a2+b2=4 hãy chứng minh: \(\frac{a+b}{\sqrt{a^2+4}}\le\sqrt{\frac{3}{2}}\)
1, Cho x+y=2 Chứng minh x4+y4\(\ge2\)
2,Với mọi a,b Chứng minh a4+ b4\(\ge a^3b+ab^3\)
3, Cho a>0 , b>0. Chứng minh \(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\)
4, Chứng minh: x4+y4\(\le\frac{x^6}{y^2}+\frac{y^6}{x^2}\)với xva2 y khác 0.
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
1/Thêm 6 vào 2 vế,ta cần c/m:
\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)
Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:
\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)
Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)
a)Cho a>b>0 chứng minh rằng \(\frac{1}{a+b}\le\frac{1}{2\sqrt{ab}}\)
b) Chứng minh \(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+\frac{\sqrt{4}-\sqrt{3}}{7}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}< \frac{1}{2}\)
Cho a,b,c>0 thỏa mãn abc=1. Chứng minh rằng
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\)
Cho a,b >0 thỏa :\(a^2+b^2=4.\)Chứng minh:\(\frac{a+b}{\sqrt{a^2-4}}\le\sqrt{\frac{3}{2}}\)
giúp mình với ,gấp lắm ,thank nhìu
ĐỀ sai nhé: \(a^2+b^2=4\Rightarrow4-a^2< 0\)
Vậy làm sao tồn tại căn của nó chứ
à nhầm đề của bạn là \(a^2-4\)kia kìa, bạn xem lại đề đi nhé
1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
Cho a,b,c >0 thỏa mãn abc=1. Chứng minh
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\)
chứng minh
a. \(\frac{a^2+3}{\sqrt{a^2+2}}>2\)
b. \(\sqrt{a}+\sqrt{b}\le\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\) với a > 0; b > 0
a.\(\Rightarrow a^2+3>2\sqrt{a^2+2}\)
\(\Leftrightarrow a^4+9+6a^2>4a^2+8\)
\(\Leftrightarrow\left(a^2+1\right)^2>0\left(LĐ\right)\)
b.Áp dụng BĐT Svarxo:
\(VP\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{b}+\sqrt{a}}=\sqrt{a}+\sqrt{b}=VT\)
Bài 1: Chứng minh rằng với mọi a, b, c, d>0, ta có:
\(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)
Bài 2: Cho x,y,z>0 và x2+y2+z2=3. CMR: \(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{3}{2}\)
Bài 3: Cho a,b,c>1 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\).CMR: \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{a+b+c}\)
chứng minh bđt sau với mọi a,b,c ko âm
\(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\le\sqrt[3]{2\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}\)
Với a; b dương chứ nhỉ, nằm dưới mẫu thêm điều kiện khác 0, mà không âm + khác 0 thì nó là dương còn gì?
\(\Leftrightarrow\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\le\sqrt[3]{2\left(\frac{a}{b}+\frac{b}{a}+2\right)}\)
\(\Leftrightarrow\left(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\right)^3\le2\left(\frac{a}{b}+\frac{b}{a}+2\right)\)
Đặt \(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}=x\ge2\) BĐT tương đương:
\(x^3\le2\left(x^3-3x+2\right)\)
\(\Leftrightarrow x^3-6x+4\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-2\right)\ge0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2+x+x-2\right]\ge0\) (luôn đúng)
Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(x=2\Leftrightarrow a=b\)