Cho đa thức f(x), thỏa mãn
f(3)=3 và f(a+b)=f(a).f(b)
Tính f(-3)
Cho đa thức f(x) thỏa mãn
f(3)=2 và f(a.b) = f(a) . f(b)
Tính f(27)
có:f(27)=f(3.3.3)
suy ra f(27)=3.f(3)
suy ra f(27)=3.2
suy ra f(27)=6
bài 1:a, tính giá trị của biểu thức 4a-b/3a+3+4b-a/3b-3 với a-b=3; a≠-1; b≠1.
b, cho đa thức f(x)=a^2+bx+c thỏa mãn f(3)=f(-3).Chứng minh rằng f(x)=f(-x)
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
1) Tính giá trị của biểu thức 4a-b/3a+3 + 4b-a/3b+3 với a-b=3; a khác 1; b khác 1
2) cho đa thức f(x)= ax^2+bx+c thỏa mãn f(3)=f(-3).
Chứng minh rằng f(x)=f(-x)
Giup minh vs a!minh dang can gap a
Câu 2:
f(3)=f(-3)
=>9a+3b+c=9a-3b+c
=>6b=0
hay b=0
=>f(x)=ax2+c
=>f(x)=f(-x)
T Nc cđ :
Bài 2: Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Bài 3: Cho hàm số f(x) = ax^2 + bx + c (a, b, c ∈ Z}). Biết f(-1) ⋮ 3; f(0) ⋮ 3; f(1) ⋮ 3. Chứng minh rằng a, b, c đều chia hết cho 3.
Bài 4: Cho đa thức f(x) = ax^3 + bx^2 + cx + d với a là số nguyên dương và f(5) - f(4) = 2019. Chứng minh f(7) - f(2) là hợp số.
Bài 4:
\(f\left(5\right)-f\left(4\right)=2019\)
=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)
=>\(61a+9b+21c=2019\)
\(f\left(7\right)-f\left(2\right)\)
\(=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c\)
\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số
1. Tìm giá trị lớn nhất của biểu thức 7lx-3l-l4x+8l-l2-3xl
2. Cho hàm số f(x) xác định với mọi x \(\varepsilon\)Q. Cho f(a+b) =f(a.b) với mọi a, b và f(2011) = 11. Tìm f(2012)
3.Cho hàm số f thỏa mãn f(1) =1; f(2) = 3; f(n) +f(n+2) = 2f(n+1) với mọi số nguyên dương n. Tính f(1) + f(2) + f(3)+...+f(30)
4. Tính giá trị của biểu thức \(\left(\frac{3}{4}-81\right)\left(\frac{^{3^2}}{5}-81\right)\left(\frac{3}{6}^3-81\right)...\left(\frac{3}{2014}^{2011}-81\right)\)
5. Đa thức P(x) cộng với đa thức Q(x) = \(x^3-2x^2-1\) được đa thức \(^{x^2}\). Tìm hệ số tự do của P(x)
6. Cho a, b, c là các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-a+c}{2a-3}=\frac{2}{3}\). Tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4a\right)^2\left(a+3c\right)^3}\)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
Cho đa thức f(x) bậc 4 , hệ số của bậc cao nhất là 1 và thỏa mãn :f(1)=3 ; f(3) =11 ; f(5)=27 . Tính giá trị A= f(-2) + 7f(6) = ?
1,Tìm các hệ số AB của đa thức f(x) = ax + b, biết : f(1)=1; f(2)=4
2, cho đa thứcf(x) : ax mũ 2 + bx + c = 0 ( vs mọi giá trị x ) . CMR : a=b=c=0
3, Cho đa thức f(x) thỏa mãn, f(x) + x. f(-x) = x+1 vs mọi giá trị của x. Tính f(1)
a) Cho đa thức f(x)= 5.f(-2).x2 thỏa mãn với mọi x. Tính f(-3)
b) Cho f(x) thỏa mãn: f(x) + x.f(-x)=x+1 với mọi x. Tính f(-1)
c) Cho f(x)= ax2 + bx + c thỏa mãn f(1)=f(-1). Chứng minh rằng: f(x)=f(-x)
Giúp mình nha. Mình cảm ơn trước nhé :P
Cho đa thức f(x) là đa thức bậc 4 với hệ số cao nhất là 1 thỏa mãn f(1)=3; f(3)=11 và f(5)=27. Tính f(-2)+7f(6).
Đặt g(x)= p(x)- x^2 -2
Thay x =1 vào biểu thức trên ta có
g(1)= p(1)-3
Mà p(1)=3 => g(1)=0
thay x=3 vào biểu thức trên ta có
g(3)= p(3)- 3^2 -2
g(3)= 0
thay x=5 vào biểu thức trên ta có:
g(5)=0
=> x=1;x=3;x=5 là các nghiệm của g(x)
=> g(x)= (x-1)(x-3)(x-5)(x+a)
Mà p(x) = g(x)+x^2+2
=>p(x)= (x-1)(x-3)(x-5)(x+a)+ x^2 +2
=>p(-2)= (-2-1)(-2-3)(-2-5)(-2+a)+ (-2)^2 +2
=>p(-2)= 216-105a
7p(6)=896+105a
=> 7p(6)+ p(-2)= 1112