12/2.5 + 12/5.8 + 12/8.11 + ... + 12/65.68
12/2.5 + 12/5.8 + 12/8.11 + ... + 12/65.68
Ta có :
\(\frac{12}{2.5}+\frac{12}{5.8}+\frac{12}{8.11}+...+\frac{12}{65.68}\)
\(=\)\(4\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{65.68}\right)\)
\(=\)\(4\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{65}-\frac{1}{68}\right)\)
\(=\)\(4\left(\frac{1}{2}-\frac{1}{68}\right)\)
\(=\)\(2-\frac{1}{17}\)
\(=\)\(\frac{35}{17}\)
Vậy \(\frac{12}{2.5}+\frac{12}{5.8}+\frac{12}{8.11}+...+\frac{12}{65.68}=\frac{35}{17}\)
Chúc bạn học tốt ~
12/2.5+12/5.8+12/8.11....12/29.32
\(\frac{12}{2.5}+\frac{12}{5.8}+\frac{12}{8.11}+...+\frac{12}{29.32}\)
\(=4.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{29.32}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(=4.\frac{15}{32}\)
\(=\frac{15}{8}\)
_Chúc bạn học tốt_
\(\frac{12}{2.5}+\frac{12}{5.8}+\frac{12}{8.11}+....+\frac{12}{29.32}\)
\(=4\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{29.32}\right)\)
\(=4\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(=4\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(=4.\frac{15}{32}=\frac{15}{8}\)
Đặt A= 12/2*5+12/5*8+12/8*11+....+12/29*32
A= 4*(3/2*5+3/5*8+3/8*11+...+3/29*32)
A = 4*(1/2-1/5+1/5-1/8+1/8-1/11+....+1/29-1/32)
A= 4*(1/2-1/32)
A= 4*15/32
A= 15/8
Bài 7: A=\(\dfrac{4}{2.5}\)+\(\dfrac{4}{5.8}\)+\(\dfrac{4}{8.11}\)+...+\(\dfrac{4}{65.68}\)
Ta có: \(A=\dfrac{4}{2\cdot5}+\dfrac{4}{5\cdot8}+...+\dfrac{4}{65\cdot68}\)
\(=\dfrac{4}{3}\cdot\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{65\cdot68}\right)\)
\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)
\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{68}\right)\)
\(=\dfrac{4}{3}\cdot\dfrac{33}{68}=\dfrac{11}{17}\)
Tính
A=4/2.5+4/5.8+4/8.11+...+4/65.68
\(A=\dfrac{4}{2\cdot5}+\dfrac{4}{5\cdot8}+\dfrac{4}{8\cdot11}+...+\dfrac{4}{65\cdot68}\\ =\dfrac{4}{3}\cdot\dfrac{3}{2\cdot5}+\dfrac{4}{3}\cdot\dfrac{3}{5\cdot8}+\dfrac{4}{3}\cdot\dfrac{3}{8\cdot11}+...+\dfrac{4}{3}\cdot\dfrac{3}{65\cdot68}\\ =\dfrac{4}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{65\cdot68}\right)\\ =\dfrac{4}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\\ =\dfrac{4}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{68}\right)\\ =\dfrac{4}{3}\cdot\dfrac{33}{68}\\ =\dfrac{11}{17}\)
Tìm x biết: (1/2.5+1/5.8+1/8.11+...+1/65.68)x-7/34=19/68
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Tính A= 4/2.4+4/5.8+8.11+...+4/65.68
( 4/2.5=4 trên 2.5 )
Ai lm đc nhớ nghi lời, cách giải đầy đủ~
Cảm ơn!!!
Sửa đề:
\(A=\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)
\(A=4.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)
\(A=4.\left(\dfrac{1}{2}-\dfrac{1}{68}\right)\)
\(A=4.\left(\dfrac{34}{68}-\dfrac{1}{68}\right)\)
\(A=4.\dfrac{33}{68}\)
\(A=\dfrac{33}{17}\)
A = \(\dfrac{4}{2.5}\) + \(\dfrac{4}{5.8}\)+ \(\dfrac{4}{8.11}\)+...+ \(\dfrac{4}{65.68}\)
A = \(\dfrac{4}{3}\).( \(\dfrac{3}{2.5}\) + \(\dfrac{3}{5.8}\)+ \(\dfrac{3}{8.11}\)+....+ \(\dfrac{3}{65.68}\))
A = \(\dfrac{4}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{11}\)+...+ \(\dfrac{1}{65}\)- \(\dfrac{1}{68}\)
A = \(\dfrac{4}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{68}\))
A = \(\dfrac{4}{3}\). \(\dfrac{33}{68}\)
A = \(\dfrac{11}{17}\)
Rút gọn biểu thức D=2.5+5.8+8.11+11.14+...+62.65+65.68
9D=2.5.9+5.8.9+8.11.9+11.14.9+...+62.65.9+65.68.9
9D=2.5.9+5.8.(11-2)+8.11.(14-5)+11.14.(17-8)+...+62.65.(68-59)+65.68.(71-62)
9D=2.5.9+5.8.11-2.5.8+8.11.14-5.8.11+11.14.17-8.11.14+...+62.65.68-59.62.65+65.68.71-62.65.67
Rút gọn các phần giống nhau còn
9D=2.5.9-2.5.8+65.68.71
9D=10+65.68.71
9D=10+313820
9D=313830
D=313830:9=34870
Vậy D=34870
Tính : \(A=\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)
A = \(\dfrac{4}{2.5}\) + \(\dfrac{4}{5.8}\) + \(\dfrac{4}{8.11}\) + ... + \(\dfrac{4}{65.68}\)
7A = \(\dfrac{4.3}{2.5}\) + \(\dfrac{4.3}{5.8}\) + \(\dfrac{4.3}{8.11}\) + ... + \(\dfrac{4.3}{65.68}\)
7A = 4 (\(\dfrac{3}{2.5}\) + \(\dfrac{3}{5.8}\) + \(\dfrac{3}{8.11}\) + ... + \(\dfrac{3}{65.68}\))
7A = 4 (\(\dfrac{1}{2}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{11}\) + ... + \(\dfrac{1}{65}\) - \(\dfrac{1}{68}\))
7A = 4 (\(\dfrac{1}{2}\) - \(\dfrac{1}{68}\))
7A = 4 . \(\dfrac{33}{68}\) = \(\dfrac{33}{17}\)
A = \(\dfrac{33}{17}\) : 7
=> A = \(\dfrac{33}{119}\)
Ta có: \(A=\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)
\(=\dfrac{4}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{65.68}\right)\)
\(=\dfrac{4}{3}\left(\dfrac{5-2}{2.5}+\dfrac{8-5}{5.8}+\dfrac{11-8}{8.11}+...+\dfrac{68-65}{65.68}\right)\)
\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)
\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{68}\right)=\dfrac{4}{3}.\dfrac{33}{68}=\dfrac{11}{17}\)
a=\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{65.68}\)
\(\Rightarrow A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{65}-\frac{1}{68}\right)\)
\(\Rightarrow A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{68}\right)=\frac{1}{2}\left(\frac{34}{68}-\frac{1}{68}\right)=\frac{1}{2}.\frac{33}{68}=\frac{33}{136}\)