\(A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{10}\)
Tính giúp mình và giải hộ mk luôn nhé
\(A=\left(2\dfrac{1}{3}+3\dfrac{1}{2}\right):\left(-4\dfrac{1}{6}+3\dfrac{1}{7}\right)+7\dfrac{1}{2}\)
\(B=4\dfrac{25}{16}+25\cdot\left(\dfrac{9}{16}:\dfrac{125}{64}\right):\left(-\dfrac{27}{8}\right)\)
giải hộ mk nhanh nhanh nhoa ☺
Tính: \(E=\dfrac{\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right)...\left(\dfrac{1}{2002}-1\right).\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{9999}{10000}}\)
Giải chi tiết giúp mình nha. Thanks
\(E=\dfrac{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2002}-1\right)\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{9999}{10000}}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{100^2}\right)}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{100}{101}\cdot\dfrac{101}{102}\cdot...\cdot\dfrac{2002}{2003}}{\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{100}{2003}:\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\right)\)
\(=\dfrac{100}{2003}:\left(\dfrac{101}{2}\right)=\dfrac{100}{2003}\cdot\dfrac{2}{101}=\dfrac{200}{202303}\)
Tính:
\(4.\left(\dfrac{-1}{2}\right)^3-2.\left(\dfrac{-1}{2}\right)^2+3.\left(\dfrac{-1}{2}\right)+1\)
Giải chi tiết giúp mik nha!
\(=4.\left(-\dfrac{1}{8}\right)-2.\dfrac{1}{4}-\dfrac{3}{2}+1=\)
\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{3}{2}+1=-\dfrac{3}{2}\)
= 4 . -1/8 - 2 . -1/4 + 3 . -1/2 + 1
= -1/2 - -1/2 + -3/2 + 1
= -1/2
Tính các giới hạn
a) \(lim\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^n}\)
\(lim\left(n^3+n\sqrt{n}-5\right)\)
Giúp mình với ạ
a/ \(\lim\limits\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^n}=\lim\limits\dfrac{\dfrac{\left(\dfrac{1}{3}\right)^{n+1}-1}{\dfrac{1}{3}-1}}{\dfrac{\left(\dfrac{1}{2}\right)^{n+1}-1}{\dfrac{1}{2}-1}}=\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}}=3\)
b/ \(\lim\limits\left(n^3+n\sqrt{n}-5\right)=+\infty-5=+\infty\)
\(a,\left(\dfrac{4}{9}+\dfrac{1}{3}\right)^2\)
\(b,\left(\dfrac{1}{2}-\dfrac{3}{5}\right)^3\)
c,\(\left(\dfrac{-10}{3}\right)^5.\left(\dfrac{-6}{4}\right)^4\)
\(\left(\dfrac{3}{4}\right)^3:\left(\dfrac{3}{4}\right)^2:\left(\dfrac{-3}{2}\right)^3\)
a: \(\left(\dfrac{4}{9}+\dfrac{1}{3}\right)^2=\dfrac{49}{81}\)
b: \(\left(\dfrac{1}{2}-\dfrac{3}{5}\right)^3=-\dfrac{1}{1000}\)
c: \(\left(-\dfrac{10}{3}\right)^5\cdot\left(-\dfrac{6}{4}\right)^4=-\dfrac{6250}{3}\)
d: \(\left(\dfrac{3}{4}\right)^3:\left(\dfrac{3}{4}\right)^2:\left(-\dfrac{3}{2}\right)^3=-\dfrac{2}{9}\)
\(\left(\dfrac{1}{2^2}-1\right)\).\(\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)\).....\(\left(\dfrac{1}{100^2}-1\right)\)
giúp mình nhanh với. tối mình phải nộp rùi huhuhu
\(\left(\dfrac{1}{2^2}-1\right)\times\left(\dfrac{1}{3^2-1}\right)\times\left(\dfrac{1}{4^2}-1\right)\times...\times\left(\dfrac{1}{100^2}-1\right)\)
\(=\dfrac{3}{2^2}\times\dfrac{8}{3^2}\times\dfrac{15}{4^2}\times...\times\dfrac{100^2-1}{100^2}\)
\(=\dfrac{1\times3}{2\times2}\times\dfrac{2\times4}{3\times3}\times\dfrac{3\times5}{4\times4}\times...\times\dfrac{99\times101}{100\times100}\)
\(=\dfrac{1\times2\times3\times...\times99}{2\times3\times4\times...\times100}\times\dfrac{3\times4\times5\times...\times101}{2\times3\times4\times...\times100}\)
\(=\dfrac{1}{100}\times\dfrac{101}{2}\)
\(=\dfrac{101}{200}\)
\(\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\dfrac{-3}{4}\cdot\dfrac{-8}{3}\cdot...\cdot\dfrac{-9999}{10000}\)
\(=\dfrac{1\cdot\left(-3\right)}{2\cdot2}\cdot\dfrac{2\cdot\left(-4\right)}{3\cdot3}\cdot...\cdot\dfrac{99\cdot\left(-101\right)}{100\cdot100}\)
\(=\dfrac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\dfrac{\left(-3\right)\cdot\left(-4\right)\cdot...\cdot\left(-101\right)}{2\cdot3\cdot4\cdot...\cdot100}\)
Ở tử số phân số bên phải có số thừa số là: \(101-3+1=99\)
99 là số lẻ nên tử số vế phải sẽ cho ra số âm.
\(=\dfrac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\dfrac{3\cdot4\cdot5\cdot...\cdot\left(-101\right)}{2\cdot3\cdot4\cdot...\cdot100}\)
\(=\dfrac{1\cdot\left(-101\right)}{100\cdot2}\)
\(=\dfrac{-101}{200}\)
Ở mỗi thừa số trong bài luôn cho ra số âm chứ làm vậy là sai rồi Ngọc Đạt.
Tính
A=\(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)
B=\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)........\left(1-\dfrac{1}{10^2}\right)\)
C=\(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+..........+\dfrac{1}{2^{2016}}\)
Giúp mk nha!Cảm ơn rất nhìu!
Ta có: \(A=\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)
\(=\dfrac{-2}{3}.\dfrac{-5}{6}.\dfrac{-9}{10}.\dfrac{-14}{15}.\dfrac{-20}{21}.\dfrac{-27}{28}.\dfrac{-35}{36}\)
\(=\dfrac{-2.\left(-5\right).3.\left(-3\right).2.\left(-7\right).\left(-4\right).5.\left(-3\right).9.5.\left(-7\right)}{3.2.3.2.5.3.5.3.7.4.7.4.9}\)
\(=\dfrac{-5}{3.4}=\dfrac{-5}{12}\)
Vậy \(A=\dfrac{-5}{12}.\)
\(C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\)
\(2C=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)
\(2C=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{2015}}\)
\(2C-C=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)
\(C=2-\dfrac{1}{2^{2016}}\)
Thực hiện phép tính sau:
\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{10^2}\right)\).
Ta có: \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)\cdot...\cdot\left(1-\dfrac{1}{10^2}\right)\)
\(=\dfrac{-3}{4}\cdot\dfrac{-8}{9}\cdot\dfrac{-15}{16}\cdot...\cdot\dfrac{-99}{100}\)
\(=-\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{99}{100}\)
\(=-\dfrac{10+1}{2\cdot10}=\dfrac{-11}{20}\)
Tính
a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}\)
b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}\)
\(a,=\dfrac{13}{50}\cdot\dfrac{50}{13}\cdot\left(-\dfrac{31}{2}\right)\cdot\dfrac{169}{2}=-\dfrac{5239}{2}\\ b,=\dfrac{-\dfrac{49}{100}\cdot\left(-125\right)}{-\dfrac{343}{27}\cdot\dfrac{81}{16}\cdot\left(-1\right)}=\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{245}{4}\cdot\dfrac{16}{1029}=\dfrac{20}{21}\)
a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}=\dfrac{13}{50}.-75:\dfrac{13}{50}.\dfrac{169}{2}=-\dfrac{75.169}{2}=-\dfrac{12675}{2}\)
b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}=\dfrac{0,49.\left(-125\right)}{-\dfrac{343}{27}.\dfrac{81}{16}.\left(-1\right)}=-\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{20}{21}\)