Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chu Anh Thái
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2023 lúc 23:49

b: Gọi d=ƯCLN(2n+3;4n+8)

=>4n+8-2(2n+3) chia hết cho d

=>2 chia hết cho d

mà 2n+3 là số lẻ

nên d=1

=>PSTG

c: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

nguyễn hải dương
2 tháng 4 2023 lúc 21:34

luiiliuoiuoi

Kiều Xuân Bách
23 tháng 12 2023 lúc 22:22

Gọi d=ƯCLN(2n+3;4n+8)
=>2n+3 4n+8 ⋮ d

=>2(2n+3)và 4n+8 ⋮ d
mà 2n+3 là số lẻ
nên d=1 

 

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 4 2017 lúc 14:51

Hướng dẫn giải:

Gọi d là ƯCLN của 3n - 2 và 4n - 3

⇒ (3n - 2)⋮ d và (4n - 3)⋮ d

⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d

⇒ d = 1 hoặc d = -1 

Vậy phân thức đã cho tối giản với ∀n ∈ N

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 12 2019 lúc 8:52

Hướng dẫn giải:

Gọi d là ƯCLN của 3n - 2 và 4n - 3

⇒ (3n - 2)⋮ d và (4n - 3)⋮ d

⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d

⇒ d = 1 hoặc d = -1 

Vậy phân thức đã cho tối giản với ∀n ∈ N

Trịnh Thùy Linh
Xem chi tiết
tran huong nhu
Xem chi tiết
Đinh Thùy Linh
26 tháng 6 2016 lúc 6:24

Phân số \(\frac{3n-2}{4n-2}\)không tối giản với n chẵn. VD n = 2 : \(\frac{3\cdot2-2}{4\cdot2-2}=\frac{4}{6}\)ko phải là phân số tối giản.

lee chae yeong
Xem chi tiết
lyna trang
30 tháng 4 2018 lúc 16:12

Gọi d là ƯC(3n-2)và (4n-2)

ta có:3n-2 chia hết cho d và 4n-3 chia hết cho d

=> 4(3n-2) chia hết cho d và 3(4n-3)chia hết cho d

=>3(4n-3)-4(3n-2) chia hết cho d

<=> 1 chia hết cho d

=> d =1.Vậy phân số 3n-2/4n-3 là phân số tối giản

sky ler
Xem chi tiết
Nguyễn Trọng Chiến
21 tháng 3 2021 lúc 20:15

Gọi \(ƯCLN\left(4n+3;3n+2\right)=d\left(d\in N^{\circledast}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\3n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3\left(4n+3\right)⋮d\\4\left(3n+2\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12n+9⋮d\\12n+8⋮d\end{matrix}\right.\)

\(\Rightarrow12n+9-12n-8⋮d\Rightarrow1⋮d\Rightarrow d=1\) 

\(\Rightarrow\dfrac{4n+3}{3n+2}\) là phân số tối giản

ntkhai0708
21 tháng 3 2021 lúc 20:17

Gọi  $ƯCLN(4n+3;3n+2)=d(d∈N^*)$

$⇒\begin{cases}4n+3 \vdots d\\3n+2 \vdots d\end{cases}$

$⇒\begin{cases}3.(4n+3)\vdots d\\4.(3n+2) \vdots d\end{cases}$

$⇒\begin{cases}12n+9 \vdots d\\12n+8 \vdots d\end{cases}$

$⇒12n+9 -(12n+8) \vdots d$

tức là $1 \vdots d⇒d=1(d∈N^*)$ 

Nên $ƯCLN(4n+3;3n+2)=1$

$⇒\dfrac{4n+3}{3n+2}$ là phân số tối giản

Huỳnh Thị Mỹ Linh
Xem chi tiết
Nguyễn Mai Hoa
12 tháng 2 2018 lúc 9:00

a; Gọi UCLN(3n-2; 4n-3)= d (d thuộc N sao)

=> 4n-3-(3n-2) chia hết cho d <=> 1 chia hết cho d=> d=1 => UCLN của 3n-2 và 4n-3 là 1

=> 3n-2/4n-3 là phân số tối giản

b tương tự (nhân 6 vs tử, nhân 4 vs mẫu rồi trừ)

Sakuraba Laura
12 tháng 2 2018 lúc 9:04

a) Gọi d là ƯCLN(3n - 2, 4n - 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)

\(\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(3n-2,4n-3\right)=1\)

\(\Rightarrow\frac{3n-2}{4n-3}\) là phân số tối giản.

b) Gọi d là ƯCLN(4n + 1, 6n + 1), d ∈ N*

\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}}\)

\(\Rightarrow\left(12n+3\right)-\left(12n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(4n+1,6n+1\right)=1\)

\(\Rightarrow\frac{4n+1}{6n+1}\) là phân số tối giản.

Trần Thị Thúy
12 tháng 2 2018 lúc 14:39

mk thấy ns cứ sao sao í\

Hoán Lê
Xem chi tiết
Minh Hiếu
12 tháng 3 2023 lúc 21:11

Gọi \(d=\left(3n-2,4n-3\right)\)

=> \(\left\{{}\begin{matrix}3n-2⋮d\\4n-3⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}12n-8⋮d\\12n-9⋮d\end{matrix}\right.\)

=> \(12n-8-\left(12n-9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

=> phân số \(\dfrac{3n-2}{4n-3}\) là phân số tối giản