Tính
A=1/2+1/2^2+1/2^3+....+1/2^9
A=
Bài 1. Tính
A= \(\left(8\dfrac{2}{7}-4\dfrac{2}{7}\right)-3\dfrac{4}{9}\)
B= \(\left(10\dfrac{2}{9}-6\dfrac{2}{9}\right)+2\dfrac{3}{5}\)
Bài 2. Tính
a) \(5\dfrac{1}{2}.3\dfrac{1}{4}\) b) \(6\dfrac{1}{3}:4\dfrac{2}{9}\) c) \(4\dfrac{3}{7}.2\)
`A=(8 2/7-4 2/7)-3 4/9`
`=8+2/7-4-2/7-3-4/9`
`=4-3-4/9`
`=1-4/9=5/9`
`B=(10 2/9-6 2/9)+2 3/5`
`=10+2/9-6-2/9+2+3/5`
`=4+2+3/5`
`=6+3/5=33/5`
Bài 2:
`a)5 1/2*3 1/4`
`=11/2*13/4`
`=143/8`
`b)6 1/3:4 2/9`
`=19/3:38/9`
`=19/3*9/38=3/2`
`c)4 3/7*2`
`=31/7*2`
`=62/7`
Bài 1:
\(A=\left(8\dfrac{2}{7}-4\dfrac{2}{7}\right)-3\dfrac{4}{9}\)
\(A=\left(\dfrac{58}{7}-\dfrac{30}{7}\right)-\dfrac{31}{9}\)
\(A=4-\dfrac{31}{9}\)
\(A=\dfrac{5}{9}\)
\(B=\left(10\dfrac{2}{9}-6\dfrac{2}{9}\right)+2\dfrac{3}{5}\)
\(B=\left(\dfrac{92}{9}-\dfrac{56}{9}\right)+\dfrac{13}{5}\)
\(B=4+\dfrac{13}{5}\)
\(B=\dfrac{33}{5}\)
Bài 2:
a) \(5\dfrac{1}{2}.3\dfrac{1}{4}=\dfrac{11}{2}.\dfrac{13}{4}=\dfrac{11.13}{2.4}=\dfrac{143}{8}\)
b) \(6\dfrac{1}{3}:4\dfrac{2}{9}=\dfrac{19}{3}:\dfrac{38}{9}=\dfrac{19}{3}.\dfrac{9}{38}=\dfrac{3}{2}\)
c) \(4\dfrac{3}{7}.2=\dfrac{31}{7}.2=\dfrac{31.2}{7}=\dfrac{62}{7}\)
1) Tính: A= 2/4.7-3/5.9+2/7.10-3/9.13+..+2/301.304-3/401.405
2) Chứng minh rằng với mọi n thuộc số tự nhiên, n lớn hơn hoặc bằng 2: 3/9.14+3/14.19+...+3/(5n-1).(5n+4)<1/15
3) a) Cho A=9/5^2+9/11^2+9/17^2+...+9/305^2. Chứng minh A<3/4
b) Cho C=4/3+7/3^2+10/3^3+...+3n+1/3^n với số tự nhiên khác 0. Chứng minh rằng C<11/4
4) Tính: a) =1/2+1/2^2+1/2^3+...+1/2^100
b) B=1/3-1/3^2+1/3^3-1/3^4+...+1/3^99-1/3^100
5) So sánh: (1-1/2).(1-1/3).(1-1/4). ... .(1-1/20) với 1/21
Bài 1 : Tính :
a , I = 1^2 + 3^2 + 5^2 + ..... + 97^2 + 99^2
b , D = 1^2 - 2^2 + 3^2 - 4^2 + ... + 99^2 - 100^2
Bài 2 : Cho A = 1 + 3 + 3^2 + 3^3 + ....+ 3^20
B = 3^21 : 2
Tính B - A
Bài 3 : Cho A = 1 + 4 + 4^2 + .....+ 4^99
B = 4^100
Chứng minh rằng : A < B/3
Bài 4 : Tính
A = 9 + 99 + 999 + ..... + 999..9 ( số 999..9 có 50 chữ số 9 )
B = 9 + 99 + 999 + ... + 999...9 ( số 999...9 có 200 chữ số 9 )
Bài 5 :
A = 1^2 + 2^2 + .... + 200^2
B = 1^2 + 3^2 + 5^2 + .... + 199^2
C = 2^2 + 4^2 + 6^2 + ....+ 200^2
D = 1^2 - 2^2 + 3^2 - 4^2 +....+ 199^2 - 200^2
E = 1^3 + 2^3 + 3^3 + ... + 50^3
Tính A= 1/2 + 1/2^2+ 1/2^3 +.....+ 1/2^9
A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
A = 2A - A = \(1-\frac{1}{2^9}\)
b1: th phép tính a. 10/11 : 19/22 + 9/11 : 19/22 b. 20/9 . 84 - 2/9 . 84 c. (1/2 - 1/3) . (5 - 1/4) d. (1/2 - 1/3 - 1/6) . (3/202 + 4/203 + 5/204) b2: th phép tính a. 4 3/8 + 5 2/3 ( hỗn số) b. 2 3/8 + 1 1/4 + 3 6/7 (hỗn số) c. 2 3/8 - 1 1/4 + 5 1/3 (hỗn số) d. 3 5/6 + 2 1/6 . 6 (hỗn số) e. 3 1/2 + 4 5/7 - 5 5/14 (hỗn số) f. 4 1/2 + 1/2 : 5 1/2 (hỗn số) giúp với ạ
2:
a: =4+3/8+5+2/3
=9+3/8+2/3
=216/24+9/24+16/24
=216/24+25/24
=241/24
b; =2+3/8+1+1/4+3+6/7
=6+3/8+1/4+6/7
=6+5/8+6/7
=419/56
c: \(=2+\dfrac{3}{8}-1-\dfrac{1}{4}+5+\dfrac{1}{3}\)
=6+3/8-1/4+1/3
=6+1/8+1/3
=6+11/24
=155/24
d: \(=3+\dfrac{5}{6}+6\cdot\dfrac{13}{6}\)
=3+13+5/6
=16+5/6
=101/6
e: =3+1/2+4+5/7-5-5/14
=3+4-5+1/2+5/7-5/14
=2+7/14+10/14-5/14
=2+12/14
=2+6/7=20/7
f: =9/2+1/2:11/2
=9/2+1/11
=99/22+2/22=101/22
b1: th phép tính a. 10/11 : 19/22 + 9/11 : 19/22 b. 20/9 . 84 - 2/9 . 84 c. (1/2 - 1/3) . (5 - 1/4) d. (1/2 - 1/3 - 1/6) . (3/202 + 4/203 + 5/204) b2: th phép tính a. 4 3/8 + 5 2/3 ( hỗn số) b. 2 3/8 + 1 1/4 + 3 6/7 (hỗn số) c. 2 3/8 - 1 1/4 + 5 1/3 (hỗn số) d. 3 5/6 + 2 1/6 . 6 (hỗn số) e. 3 1/2 + 4 5/7 - 5 5/14 (hỗn số) f. 4 1/2 + 1/2 : 5 1/2 (hỗn số) giúp với ạ
2:
a: =4+3/8+5+2/3
=9+3/8+2/3
=216/24+9/24+16/24
=216/24+25/24
=241/24
b; =2+3/8+1+1/4+3+6/7
=6+3/8+1/4+6/7
=6+5/8+6/7
=419/56
c: \(=2+\dfrac{3}{8}-1-\dfrac{1}{4}+5+\dfrac{1}{3}\)
=6+3/8-1/4+1/3
=6+1/8+1/3
=6+11/24
=155/24
d: \(=3+\dfrac{5}{6}+6\cdot\dfrac{13}{6}\)
=3+13+5/6
=16+5/6
=101/6
e: =3+1/2+4+5/7-5-5/14
=3+4-5+1/2+5/7-5/14
=2+7/14+10/14-5/14
=2+12/14
=2+6/7=20/7
f: =9/2+1/2:11/2
=9/2+1/11
=99/22+2/22=101/22
Tính : A, 3/8 - ( 3/4 - 1/2 ) B, -5/9 - -3/5 - 1/9 - -2/-5 C, 21.5 / 7.25 D, 3/4 + 1,1 : ( 2/5 - 1 1/2 ) - ( 1/3 ) mũ 2 Lưu ý : 1 1/2 là hỗn số
a: =3/8-1/4
=3/8-2/8
=1/8
b: =-5/9+3/5-1/9+2/5
=-2/3+1
=1/3
c: =21/7*5/25=3/5
d: =3/4+11/10:(2/5-3/2)-1/9
=-13/36
tính tổng
1. A =1/1^2+1/2^2+1/3^2+1/4^2+...+1/50^2
chứng minh rằng A <2
2. S=3+3/2+3/2^2+3/2^4+...+3/2^9
A=\(\frac{1}{1^2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)
A=1+\(\frac{1}{2^2}\)\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)
A<1+\(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+...+\(\frac{1}{49\cdot50}\)
A<1+1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)
A<2-\(\frac{1}{50}\)<2
=>A<1(câu 1)
câu 1: cmr
A=1/1^2 + 1/2^2 + 1/3^2 + 1/4^2 + ....+ 1/50^2
chứng minh a bé hơn 2
câu 2 : tính tổng
S = 3 + 3/2 + 3/2^2 + ....+3/2^9
câu 3 : Ss 1/2.3 với 1/2 - 1/3
câu 4 : thực hiện phép tính
M = 9/40 - 11/60 + 13/84 - 15/112
Câu 1:
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)
\(A=\frac{1}{1\times1}+\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+.....+\frac{1}{50\times50}\)
\(A< \frac{1}{1\times1}+\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+.....+\frac{1}{49\times50}\)
\(A< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}\)
\(A< 2-\frac{1}{50}< 2\)
Câu 2:
\(S=3+\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+.....+\frac{3}{2^8}\)
\(2S-S=\left(6+3+\frac{3}{2}+.....+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}\)
\(S=\frac{3069}{512}\)
Câu 3:
\(\frac{1}{2\times3}=\frac{1}{6}\)
\(\frac{1}{2}-\frac{1}{3}=\frac{3}{6}-\frac{2}{6}=\frac{1}{6}\)
\(\Rightarrow\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)
Câu 4:
\(M=\frac{9}{40}-\frac{11}{60}+\frac{13}{84}-\frac{15}{112}\)
\(M=\left(\frac{9}{40}-\frac{11}{60}\right)+\left(\frac{13}{84}-\frac{15}{112}\right)\)
\(M=\left(\frac{27}{120}-\frac{22}{120}\right)+\left(\frac{52}{336}-\frac{45}{336}\right)\)
\(M=\frac{1}{24}+\frac{1}{48}\)
\(M=\frac{2+1}{48}\)
\(M=\frac{3}{48}\)
\(M=\frac{1}{16}\)
Chúc bạn học tốt
câu 2:
s= 3+3/2+3/3^2+.....+3/2^9
=> 2s=6+3+3/2+...+3/2^8
=> 2s-s =( 6+3+3/2 + ....+3/2^8)- ( 3+3/2 +3/2^2+...+3/2^9)
=> s=6-3/2^9=3069/512
2)tính :
a)2/5*1/2:1/3;b)2/9:2/3*1/3;c)1/2*1/3+1/4;d)2/7:2/3-1/7