(3x+70^2015=(3x-7)^2016
Tìm x biết (3x+7)2015=(3x+7)2016
Tìm x biết:
1) x (x-2016) + 2015 (2016-x) = 0
2) -5x (x-15) + (15-x) = 0
3) 3x (3x-7) - (7-3x) =0
1) x (x-2016) + 2015 (2016-x) = 0
x (x-2016) - 2015 (x- 2016) = 0
(x-2015)(x-2016) =0
\(\Rightarrow\orbr{\begin{cases}x-2015=0\\x-2016=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}}\)
Vậy x= 2015; 2016
2) -5x (x-15) + (15-x) = 0
-5x (x-15) - (x-15) =0
(-5x -1) (x-15) =0
\(\Rightarrow\orbr{\begin{cases}-5x-1=0\\x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}-5x=1\\x=15\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{5}\\x=15\end{cases}}}\)
Vậy x= -1/5; 15
3) 3x (3x-7) - (7-3x) =0
3x(3x-7) + (3x -7) =0
(3x+1) (3x-7) =0
\(\Rightarrow\orbr{\begin{cases}3x+1=0\\3x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=-1\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=\frac{7}{3}\end{cases}}}\)
Vậy x= -1/3 ; 7/3
Cho f(x)=x^3-3x^2+3x+3.CM:f(2016/2015)<f(2015/2014)
Đồ đầu đất .Làm đươc rồi ,khỏi cần làm nữa
Tim x,yz thuộc Z biết: 3z-2y/2015=2x-5z/2016=5y-3x/2017 và yz<3x
Tìm x
(3x-2^4)x7^2015=2.7^2016
Cho đa thức f(x)=x3-3x2+3x+3
Chứng minh: \(f\left(\frac{2017}{2016}\right)< f\left(\frac{2016}{2015}\right)\)
Ta sẽ xét tính biến thiên của hàm số :
Ta có \(f\left(x\right)=\left(x^3-3x^2+3x-1\right)+4=\left(x-1\right)^3+4\)
\(f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)=\left(\frac{2017}{2016}-1\right)^3-\left(\frac{2016}{2015}-1\right)^3\)
\(=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left[\left(\frac{2017}{2016}-1\right)^2+\left(\frac{2016}{2015}-1\right)^2+\left(\frac{2017}{2016}-1\right)\left(\frac{2016}{2015}-1\right)\right]\)
\(=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left(\frac{1}{2016^2}+\frac{1}{2015^2}+\frac{1}{2016}.\frac{1}{2015}\right)< 0\)
\(\Rightarrow f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)< 0\Rightarrow f\left(\frac{2017}{2016}\right)< f\left(\frac{2016}{2015}\right)\)
Ta sẽ xét tính biến thiên của hàm số :
Ta có f\left(x\right)=\left(x^3-3x^2+3x-1\right)+4=\left(x-1\right)^3+4f(x)=(x3−3x2+3x−1)+4=(x−1)3+4
f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)=\left(\frac{2017}{2016}-1\right)^3-\left(\frac{2016}{2015}-1\right)^3f(20162017)−f(20152016)=(20162017−1)3−(20152016−1)3
=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left[\left(\frac{2017}{2016}-1\right)^2+\left(\frac{2016}{2015}-1\right)^2+\left(\frac{2017}{2016}-1\right)\left(\frac{2016}{2015}-1\right)\right]=(20161−20151)[(20162017−1)2+(20152016−1)2+(20162017−1)(20152016−1)]
=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left(\frac{1}{2016^2}+\frac{1}{2015^2}+\frac{1}{2016}.\frac{1}{2015}\right)< 0=(20161−20151)(201621+201521+20161.20151)<0
\Rightarrow f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)< 0\Rightarrow f\left(\frac{2017}{2016}\right)< f\left(\frac{2016}{2015}\right)⇒f(20162017)−f(20152016)<0⇒f(20162017)<f(20152016)
X2016 = 3X2015 . Tìm X
Tìm x
a)3x+1=9x
b)(3.x-7)2015=(3x-7)2016
(3x-7)^2018 = (3x-7)^2016
\(\left(3x-7\right)^{2018}=\left(3x-7\right)^{2016}\)
\(\Leftrightarrow\left(3x-7\right)^{2018}-\left(3x-7\right)^{2016}=0\)
\(\Leftrightarrow\left(3x-7\right)^{2016}\left[\left(3x-7\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3x-7\right)^{2016}=0\\\left(3x-7\right)^2-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(3x-7\right)^{2016}=0\\\left(3x-7\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-7=0\\3x-7=1\\3x-7=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x=7\\3x=8\\3x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{8}{3}\\x=2\end{matrix}\right.\)