Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thùy Nguyễn Phương
Xem chi tiết
00 qant
3 tháng 8 2019 lúc 21:18

B trước nhé:

Áp dụng bất đẳng thức cosi cho 2 số thực dương a^2 và b^2; b^2 và c^2 ; c^2 và a^2 ta được:

a^2 + b^2\(\ge\)2ab

Tương tự b^2 + c^2\(\ge\)2bc

Cx có c^2+a^2\(\ge\)2ac

=> 2(a^2+b^2+c^2)\(\ge\)2(ab + bc +ca)

=>a^2 + b^2 +c^2\(\ge\)ab+bc+ca

Nguyễn Phương Linh
Xem chi tiết
alibaba nguyễn
11 tháng 9 2016 lúc 17:57

Ta có a+ b- a3 b - ab= (a - b)(a3 - b3)

= (a -b)2 (a2 + ab + b2)

= (a - b)2 [\(\frac{3b^2}{4}+\left(a+\frac{b}{2}\right)^2\)]\(\ge0\)

Ta lại có a4 + b4 \(\ge2a^2b^2\)

Từ đó => 2(a4 + b4\(\ge\)ab3 + a3 b + 2 a2 b2

Nguyễn Hữu Minh Thành
11 tháng 10 2020 lúc 20:38

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\cdot\left(a^{ }^2+b^2\right)\ge2ab\cdot\frac{\left(a+b\right)^2}{2}=ab\cdot\left(a+b\right)^2=ab^3+2a^2b^2+a^3b\)

Khách vãng lai đã xóa
An Vy
Xem chi tiết
Thanh Tùng DZ
8 tháng 8 2019 lúc 8:34

\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)

\(\Leftrightarrow a^4+b^4+2a^2b^2-2ab^3-2a^3b\ge0\)

\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)\ge\left(a^2+b^2\right).2\sqrt{a^2.b^2}-2ab\left(a^2+b^2\right)=0\)( luôn đúng )

vì BĐT cuối luôn đúng nên BĐT đã cho đúng \(\Leftrightarrow a=b\)

pham anh khoa
Xem chi tiết
pham anh khoa
30 tháng 4 2020 lúc 20:53

Ai giúp giùm tớ tớ cảm mơn huhu!!!

Khách vãng lai đã xóa
Quỳnh
30 tháng 4 2020 lúc 22:16

Bài làm

Ta có: a4 + b4 > a3b + ab3 

=> a4 + b4 - a3b - ab3 > 0

=> a3( a - b ) + b3( a - b ) > 0

=> ( a3 + b3 )( a - b ) > 0

Ta xét ( a + b )( a2 - ab + b2 )( a - b ) > 0

=> ( a2 - b2 )( a2 - ab + b2 ) > 0

<=> \(\orbr{\begin{cases}a^2-b^2=0\\a^2-ab+b^2=0\end{cases}}\)                    

chứng minh tích trên lớn hơn 0 nx là ok. 

Khách vãng lai đã xóa
Phùng Minh Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 1 2022 lúc 14:01

\(\Leftrightarrow a^4-a^3b+b^4-ab^3>=0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)>=0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a^2+ab+b^2\right)>=0\)(luôn đúng)

Nguyễn Minh Tuyền
Xem chi tiết
nguyễn kim thương
11 tháng 5 2017 lúc 12:18

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

tth_new
27 tháng 3 2019 lúc 9:32

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

Linh
Xem chi tiết
Trung Hoàng
Xem chi tiết
Lê Bảo Thy
12 tháng 5 2020 lúc 15:25

hello

Khách vãng lai đã xóa
Nguyễn bảo ngoc
Xem chi tiết