Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
16 Huỳnh Tuấn Kiệt
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 12 2021 lúc 11:49

\(ĐK:x\ge\dfrac{3}{2}\\ PT\Leftrightarrow3\sqrt{2x-3}-2\sqrt{2x-3}+6\sqrt{2x-3}=1\\ \Leftrightarrow7\sqrt{2x-3}=1\\ \Leftrightarrow\sqrt{2x-3}=\dfrac{1}{7}\\ \Leftrightarrow2x-3=\dfrac{1}{49}\Leftrightarrow x=\dfrac{74}{49}\left(tm\right)\)

Nhã Doanh
19 tháng 3 2018 lúc 22:08

\(x^4-16x^2+32x-16=0\)

\(\Leftrightarrow x^4-2x^3+2x^3-4x^2-12x^2+24x+8x-16=0\)

\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)-12x\left(x-2\right)+8\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-12x+8\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-2x^2+4x^2-8x^2-4x+8\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-2\right)+4x\left(x-2\right)-4\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(x^2+4x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2+2\sqrt{2}\\x=-2-2\sqrt{2}\end{matrix}\right.\)

Vậy.............

TM Vô Danh
19 tháng 3 2018 lúc 22:11

\(x^4-16x^2+32x-16=0\)

\(\Leftrightarrow x^4-16\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x^4-16\left(x-1\right)^2=0\)

\(\Leftrightarrow x^4-\left(4\left(x-1\right)\right)^2=0\)

\(\Leftrightarrow\left(x^2-4\left(x-1\right)\right).\left(x^2+4\left(x-1\right)\right)=0\)

\(\Leftrightarrow\left(x^2-4x+4\right).\left(x^2+4x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2.\left(x^2+4x-4\right)=0\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=0\) hoặc \(x^2+4x-4=0\)

1) \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(2\)) \(x^2+4x-4=0\Leftrightarrow x^2+4x+4-8=0\)

\(\Leftrightarrow\left(x+2\right)^2=8\)

\(\Leftrightarrow x+2=\sqrt{8}\) hoặc \(x+2=-\sqrt{8}\)

\(\Leftrightarrow x=\sqrt{8}-2\) \(x=-\sqrt{8}-2\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;\sqrt{8}-2;-\sqrt{8}-2\right\}\)

Lê Thị Ngọc Duyên
19 tháng 3 2018 lúc 22:52

\(x^4-16x^2+32x-16=0\)

\(\Leftrightarrow\left(x^4-16\right)-\left(16x^2-32x\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2+4\right)-16x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+4\right)-16x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-12x+8\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-2x^2+4x^2-8x^2-4x+8\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(x^2+4x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x^2+4x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2+2\sqrt{2}\\x=-2-2\sqrt{2}\end{matrix}\right.\)

Vậy x có tập \(n_o\) \(S=\left\{2;-2+2\sqrt{2};-2-2\sqrt{2}\right\}\)

LÊ NGUYÊN HỒNG
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 6 2018 lúc 4:56

x + 1 3 + 3 2 x + 1 4 = 2 x + 3 x + 1 6 + 7 + 12 x 12 ⇔ x + 1 3 + 6 x + 3 4 = 5 x + 3 6 + 7 + 12 x 12

⇔ 4(x + 1) + 3(6x + 3) = 2(5x + 3) + 7 + 12x

⇔ 4x + 4 + 18x + 9 = 10x + 6 + 7 + 12x

⇔ 4x + 18x – 10x – 12x = 6 + 7 – 4 – 9

⇔ 0x = 0

Phương trình có vô số nghiệm.

hbvvyv
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 23:03

a: ĐKXĐ: x>=1/2

\(PT\Leftrightarrow2\sqrt{2x-1}-2\cdot3\sqrt{2x-1}+2\cdot4\sqrt{2x-1}=12\)

=>\(4\sqrt{2x-1}=12\)

=>\(\sqrt{2x-1}=3\)

=>2x-1=9

=>2x=10

=>x=5(nhận)

b: Sửa đề: \(\sqrt{9x^2-6x+1}=4\)

=>|3x-1|=4

=>3x-1=4 hoặc 3x-1=-4

=>3x=5 hoặc 3x=-3

=>x=-1 hoặc x=5/3

Võ Quang Huy
Xem chi tiết

a,

ĐK : \(x\ge\frac{-15}{2}\)

Phương trình đã cho tương đương với

\(\sqrt{2x+15}=32x^2+32x-20\)

\(\Leftrightarrow2x+15=\left(32x^2+32x-20\right)^2\)\(\Leftrightarrow1024x^4+2048x^3-256x^2-1282x+385=0\)

Phương trình này có 2 nghiệm  là \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-11}{8}\end{cases}}\) nên dễ dàng có được

⇔ ( 16x2 + 14x − 11 ) ( 64x2 + 72x − 35 ) = 0

Kết hợp với điều kiên bài toán ta có nghiệm của phương trình là \(x=\frac{1}{2};x=\frac{-9-\sqrt{221}}{16}\)

b,\(x^2=\sqrt{2-x}+2\)

ĐK \(x\le2\)

\(PT\Leftrightarrow\sqrt{2-x}=x^2-2\)

\(\Leftrightarrow2-x=\left(x^2-2\right)^2=x^4-4x^2+4\)

\(\Leftrightarrow x^4-4x^2+x+2=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2-3x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x-1\right)=0\)

\(x^2-x-1>0\)nên

\(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}\left(Tm\right)}}\)

Hien Pham
Xem chi tiết
Aki Tsuki
24 tháng 2 2018 lúc 23:32

ĐKXĐ:\(x\ne\pm\dfrac{1}{2}\)

\(\dfrac{1+8x}{4+8x}-\dfrac{4x}{12x-6}+\dfrac{32x^2}{3\left(4-16x^2\right)}=0\)

\(\Leftrightarrow\dfrac{1+8x}{4\left(2x+1\right)}-\dfrac{4x}{6\left(2x-1\right)}+\dfrac{32x^2}{-6\cdot\left(2x-1\right)\left(2x+1\right)}=0\)

\(\Leftrightarrow\dfrac{6\cdot\left(1+8x\right)\left(2x-1\right)}{24\left(2x-1\right)\left(2x+1\right)}-\dfrac{4\cdot4x\left(2x+1\right)}{24\left(2x-1\right)\left(2x+1\right)}-\dfrac{32x^2\cdot4}{24\left(2x-1\right)\left(2x+1\right)}=0\)

\(\Leftrightarrow96x^2-36x-6-36x^2-16x-144x^2=0\)

\(\Leftrightarrow-84x^2-52x-6=0\)

\(\Leftrightarrow\Delta=688\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{52-\sqrt{688}}{-168}=\dfrac{-13+\sqrt{43}}{42}\\x_2=\dfrac{52+\sqrt{688}}{-168}=\dfrac{-13-\sqrt{43}}{43}\end{matrix}\right.\)

Vậy pt có 2 nghiệm phân biệt............

Nguyễn Phương Anh
Xem chi tiết
Jenny Moon
Xem chi tiết
NY nơi đâu ( ɻɛɑm ʙáo cá...
26 tháng 2 2020 lúc 19:52

\(2x^3+3x^2-32x=48\)

\(2x^3+3x^2-32x-48=0\)

\(\left(2x^3+3x^2\right)-\left(32x+48\right)=0\)

\(x^2\left(2x+3\right)-16\left(2x+3\right)=0\)

\(\left(x^2-16\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-16=0\\2x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(x+4\right)\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=4\end{cases}}\\x=-\frac{3}{2}\end{cases}}}\)\(\left(x+4\right)\left(x-4\right)\left(2x+3\right)=0\)

\(\hept{\begin{cases}x+4=0\\x-4=0\\2x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=4\\x=-\frac{3}{2}\end{cases}}}\)

Khách vãng lai đã xóa
나 재민
26 tháng 2 2020 lúc 19:53

\(2x^3+3x^2-32x=48\)

\(\Leftrightarrow2x^3+3x^2-32x-48=0\)

\(\Leftrightarrow\left(2x^3-32x\right)+\left(3x^2-48\right)=0\)

\(\Leftrightarrow2x\left(x^2-16\right)+3\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(x^2-16\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0;x+4=0\\2x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm4\\x=\frac{-3}{2}\end{cases}}\)

Vậy tập nghiệm của pt là S={4;-4;-3/2}

_Học tốt_

Khách vãng lai đã xóa
Trần Thị Mĩ Duyên
26 tháng 2 2020 lúc 19:53

Ta có \(2x^3+3x^2-32x=48\)

\(\Leftrightarrow2x^3+3x^2-32x-48=0\)

\(\Leftrightarrow2x^2\left(x+\frac{3}{2}\right)-32\left(x+\frac{3}{2}\right)=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)\left(2x^2-32\right)=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)2\left(x^2-16\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{3}{2}=0\\x^2-16=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=\pm4\end{cases}}}\)

Vậy đccm

Khách vãng lai đã xóa