Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Phương Linh
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
5 tháng 3 2023 lúc 10:42

\(a,x^2-2=0\Leftrightarrow x^2-\left(\sqrt{2}\right)^2=0\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)

Vậy \(S=\left\{-\sqrt{2};\sqrt{2}\right\}\)

\(b,x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy \(S=\left\{0;2\right\}\)

\(c,x^2-2x=0\Leftrightarrow x\left(x-2\right)\) phương trình như câu b, 

\(d,x\left(x^2+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(voli\right)\end{matrix}\right.\)( voli là vô lí )

Vậy \(S=\left\{0\right\}\)

Phùng Tấn Minh
5 tháng 3 2023 lúc 16:09

Vậy �={−2;2}

�,�(�−2)=0⇔[�=0�=2

Vậy �={0;2}

�,�2−2�=0⇔�(�−2) phương trình như câu b, 

�,�(�2+1)⇔[�=0�2+1=0⇔[�=0�2=−1(����)( voli là vô lí )

Vậy �={0}

Thy Minh
Xem chi tiết
Cạc NGU
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2024 lúc 20:17

\(x^2-\left(m-1\right)x-2=0\)

a=1; b=-m+1; c=-2

Vì a*c=-2<0

nên phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-\left(m-1\right)\right]}{1}=m-1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=\left(m-1\right)^2-4\cdot\left(-2\right)=\left(m-1\right)^2+8\)

=>\(x_1-x_2=\pm\sqrt{\left(m-1\right)^2+8}\)

\(\dfrac{x_1}{x_2}=\dfrac{x_2^2-3}{x_1^2-3}\)

=>\(x_1\left(x_1^2-3\right)=x_2\left(x_2^2-3\right)\)

=>\(x_1^3-x_2^3=3x_1-3x_2\)

=>\(\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2-3\right)=0\)

=>\(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2-3\right]=0\)

=>\(\left[{}\begin{matrix}x_1-x_2=0\\\left(m-1\right)^2-\left(-2\right)-3=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\sqrt{\left(m-1\right)^2+8}=0\left(vôlý\right)\\\left(m-1\right)^2-1=0\end{matrix}\right.\)

=>\(\left(m-1\right)^2=1\)

=>\(\left[{}\begin{matrix}m-1=1\\m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)

Mình Là Hanh Uwu
Xem chi tiết
迪丽热巴·迪力木拉提
18 tháng 5 2021 lúc 8:59

a) \(\left(x-1\right)\left(x+5\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

b) \(x+1x^2+1=x^2+x+1=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)với mọi x.

=> Pt vô nghiệm.

c) \(x^2+4x=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

P/s: Check lại đề ý b nhé.

Nguyễn Lê Phước Thịnh
18 tháng 5 2021 lúc 11:36

a) Ta có:(x-1)(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Vậy: S={1;-5}

b) Ta có: \(x^2+x+1=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)(Vô lý)

Vậy: \(S=\varnothing\)

c) Ta có: \(x^2+4x=0\)

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy: S={0;-4}

Hoàng Văn Anh
Xem chi tiết
Mystrad Fortin
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 6 2021 lúc 14:57

\(x^2-\left(m+4\right)x+4m=0\) (1)

a)Thay x=2 vào pt (1) ta được: \(4-\left(m+4\right).2+4m=0\) \(\Leftrightarrow m=2\)

Thay m=2 vào pt (1) ta được: \(x^2-6x+8=0\)\(\Leftrightarrow x^2-4x-2x+8=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy nghiệm còn lại là 4

b)Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\Leftrightarrow m^2-8m+16>0\)\(\Leftrightarrow\left(m-4\right)^2>0\)\(\Leftrightarrow m\ne4\)

Do x1 là một nghiệm của pt \(\Rightarrow x_1^2-\left(m+4\right)x_1+4m=0\)

\(\Rightarrow x_1^2=\left(m+4\right)x_1-4m=0\)

Theo viet có: \(x_1+x_2=m+4\)

\(x_1^2+\left(m+4\right)x_2=16\)

\(\Leftrightarrow\left(m+4\right)x_1-4m+\left(m+4\right)x_2=16\)

\(\Leftrightarrow\left(m+4\right)\left(x_1+x_2\right)-4m-16=0\)

\(\Leftrightarrow\left(m+4\right)^2-4m-16=0\)

\(\Leftrightarrow m^2+4m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\end{matrix}\right.\)(Thỏa)

Vậy...

Nguyễn Linh
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 22:11

ĐKXĐ: \(x\ge0\)

\(\left(x^2-x-m\right)\sqrt{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)

Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm

Do đó:

a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm 

\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)

b. Để pt có 2 nghiệm pb 

TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0

\(\Leftrightarrow m=0\)

TH2: (1) có 2 nghiệm trái dấu

\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)

\(\Rightarrow m\ge0\)

c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)

Menna Brian
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 4 2022 lúc 18:16

a.

Phương trình có 2 nghiệm khi:

\(\Delta'=4-2m\ge0\Rightarrow m\le2\)

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2+x_2^2-x_1-x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=16\)

\(\Leftrightarrow16-4m-4=16\)

\(\Leftrightarrow m=-1\) (thỏa mãn)

Nguyễn Ngọc Huy Toàn
7 tháng 4 2022 lúc 18:18

a.\(\Delta=\left(-4\right)^2-4.2m=16-8m\)

Để pt có nghiệm x1, x2 thì \(\Delta>0\)

\(\Leftrightarrow16-8m>0\)

\(\Leftrightarrow-8m>-16\)

\(\Leftrightarrow m< 2\)

b.

Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=2m\end{matrix}\right.\)

\(x_1^2+x_2^2-x_1-x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-\left(x_1+x_2\right)=16\)

\(\Leftrightarrow4^2-2.2m-4-16=0\)

\(\Leftrightarrow-4m-4=0\)

\(\Leftrightarrow m=-1\)

Phương Uyên
Xem chi tiết
Nguyễn Ngọc Huy Toàn
22 tháng 3 2022 lúc 13:10

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

kiên vn
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2022 lúc 20:05

Đặt C(x)=0

=>x2-x=0

=>x(x-1)=0

=>x=0 hoặc x=1