Tìm bộ ba số nguyên dương a,b,c sao cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{4}{5}\)
tìm bộ ba số nguyên dương a,b,c sao cho :\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{4}{5}\)
Tìm bộ ba số tự nhiên khác 0 sao cho: \(\dfrac{1}{a}+\dfrac{1}{a+b}+\dfrac{1}{a+b+c}=1\)
Tổng các số trong phương trình là 1, vì vậy ta có: 3a + 2b + c = 1.
Với số tự nhiên a, b và c, ta có thể thử các giá trị để tìm bộ ba số thỏa mãn phương trình.
Ví dụ, ta có thể thử a = 1, b = 1 và c = -4, thì 3a + 2b + c = 3 + 2 + (-4) = 1, phương trình được thỏa mãn.
Vậy, một bộ ba số tự nhiên khác 0 thỏa mãn phương trình đã cho là a = 1, b = 1 và c = -4.
Cho ba số thực dương a,b,c thỏa mãn a+b+c=1. Tìm GTNN của biểu thức \(P=\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}\)
Áp dụng BĐT BSC:
\(P=\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}\ge\dfrac{\left(1+2+3\right)^2}{a+b+c}=\dfrac{36}{1}=36\)
\(minP=36\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{3}\\c=\dfrac{1}{2}\end{matrix}\right.\)
Cho ba số dương a,b,c sao cho : abc=1 .Chứng minh :
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{3}{2}\left(a+b+c-1\right)\)
Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)
BĐT trở thành:
\(\dfrac{y^2}{xz}+\dfrac{z^2}{xy}+\dfrac{x^2}{yz}\ge\dfrac{3}{2}\left(\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}-1\right)\)
\(\Leftrightarrow2\left(x^3+y^3+z^3\right)+3xyz\ge3x^2y+3y^2z+3z^2x\)
Áp dụng BĐT Schur ta có:
\(x^3+y^3+z^3+3xyz\ge x^2y+y^2z+z^2x+xy^2+yz^2+zx^2\)
\(\Rightarrow VT\ge\left(x^3+xy^2\right)+\left(y^3+yz^2\right)+\left(z^3+zx^2\right)+x^2y+y^2z+z^2x\ge3\left(x^2y+y^2z+z^2x\right)\)
Cho a, b, c là các số dương thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\). CMR: \(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ba}\le\dfrac{a+b+c}{4}\)
Sửa \(\le\) thành \(\ge\) nha bạn
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
Ta có \(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Tương tự: \(\left\{{}\begin{matrix}\dfrac{b^2}{b+ca}=\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}\\\dfrac{c^2}{c+ba}=\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\end{matrix}\right.\)
Áp dụng BĐT cosi:
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3}{4}a\)
\(\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3}{4}b\)
\(\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{c^3}{64}}=\dfrac{3}{4}c\)
Cộng VTV:
\(\Leftrightarrow VT+\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3}{4}\left(a+b+c\right)\\ \Leftrightarrow VT\ge\dfrac{3\left(a+b+c\right)}{4}-\dfrac{2\left(a+b+c\right)}{8}\\ \Leftrightarrow VT\ge\dfrac{a+b+c}{4}\)
Dấu \("="\Leftrightarrow a=b=c=3\)
Tìm x, y,z nguyên dương sao cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
Không mất tính tổng quát, giả sử \(a\le b\le c\)
\(\Rightarrow\dfrac{1}{a}\ge\dfrac{1}{b}\ge\dfrac{1}{c}\)
\(\Rightarrow2=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}=\dfrac{3}{a}\)
\(\Rightarrow a\le\dfrac{3}{2}\)
Mà a là số nguyên dương
\(\Rightarrow a=1\)
Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
\(\Rightarrow\dfrac{1}{b}+\dfrac{1}{c}=1\le\dfrac{1}{b}+\dfrac{1}{b}=\dfrac{2}{b}\)
\(\Rightarrow b\le2\)
\(\Rightarrow y\in\left\{1;2\right\}\)
\(\Rightarrow z\in\left\{1;2\right\}\)
Vậy \(\left(x;y;z\right)\in\left\{\left(1;2;2\right),\left(2;2;1\right),\left(2;1;2\right),\left(2;2;1\right)\right\}\)
Cho a, b, c là 3 số nguyên dương, \(a\le b\le c\) sao cho \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)=3\).Có bao nhiêu bộ ba a, b, c.
ba số thực dương a,b,c thỏa mãn \(a+\dfrac{1}{b}=4;b+\dfrac{1}{c}=1;c+\dfrac{1}{a}=\dfrac{7}{3}\). Tính abc
Nhân vế với vế của giả thiết:
\(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{c}\right)\left(c+\dfrac{1}{a}\right)=\dfrac{28}{3}\)
\(\Leftrightarrow\left(ab+\dfrac{1}{bc}+\dfrac{a}{c}+1\right)\left(c+\dfrac{1}{a}\right)=\dfrac{28}{3}\)
\(\Leftrightarrow abc+\dfrac{1}{abc}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+a+b+c=\dfrac{28}{3}\) (1)
Cộng vế với vế giả thiết:
\(\Rightarrow a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4+1+\dfrac{7}{3}=\dfrac{22}{3}\) (2)
(1);(2) \(\Rightarrow abc+\dfrac{1}{abc}+\dfrac{22}{3}=\dfrac{28}{3}\)
\(\Rightarrow abc+\dfrac{1}{abc}=2\)
\(\Rightarrow\left(abc\right)^2-2\left(abc\right)+1=0\)
\(\Rightarrow\left(abc-1\right)^2=0\)
\(\Rightarrow abc=1\)
cho các số dương a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\)
Tìm giá trị lớn nhất của biểu thức M= \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\)
Áp dụng bất đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\) \(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)
\(\dfrac{1}{2a+b+c}=\dfrac{1}{4}.\dfrac{4}{2a+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{2a}+\dfrac{1}{b+c}\right)\le\dfrac{1}{4}\left[\dfrac{1}{2a}+\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\right]=\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{2c}\right)\)
CMTT \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a+2b+c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{b}+\dfrac{1}{2c}\right)\\\dfrac{1}{a+b+2c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{c}\right)\end{matrix}\right.\)
\(\Rightarrow M=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{2}{2a}+\dfrac{2}{2b}+\dfrac{2}{2c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}.4=1\)
\(minM=1\Leftrightarrow a=b=c=\dfrac{3}{4}\)