Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thảo Vân
Xem chi tiết
TV Cuber
12 tháng 3 2023 lúc 10:59

`C = (x+4)/(x+1) = (x+1+3)/(x+1) = 1+3/(x+1)`

Để `C in ZZ`

`=> x+1 in Ư(3)=(+-1,+-3)`

`@ x+1  =1 => x =0`

`@ x+1=-1 => x = -2`

`@x+1 =3 => x = 2`

`@x+1 =-3 =>x=-4`

`B = (x-4)/(x+2) = (x+2-6)/(x+2) = 1-6/(x+2)`

Để `B in ZZ`

`=> x+2 in Ư(6) = {+-1,+-2,+-3,+-6)`

`@ x+2 =1 => x = -1`

`@x+2 =-1 => x=-3`

`@ x+2 =2 => x=0`

`@ x+2 =-2 => x=-4`

`@x+2 =3 => x = 1`

`@ x +2 =-3 => x = -5`

`@ x+2 =6 => x=4`

`@x+2 =-6 => x= -8`

crewmate
Xem chi tiết
Akai Haruma
30 tháng 11 2021 lúc 8:19

Bài 1:

$M=\frac{27}{x-15}-1$

Để $M$ min thì $\frac{27}{x-15}$ min. 

Để $\frac{27}{x-15}$ min thì $x-15$ là số âm lớn nhất 

$\Rightarrow x$ là số nguyên lớn nhất nhỏ hơn 15

$\Rightarrow x=14$

Khi đó: $M_{\min}=\frac{42-14}{14-15}=-28$

Akai Haruma
30 tháng 11 2021 lúc 8:22

Bài 2:

\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}\left[\left(\dfrac{1}{2}\right)^4+1\right]=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}.\dfrac{17}{16}=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}=16=\left(\dfrac{1}{2}\right)^{-4}\)

$\Rightarrow x-4=-4\Leftrightarrow x=0$

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
18 tháng 8 2023 lúc 15:14

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)

Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)

\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)

\(\Leftrightarrow4\ge2+xy\)

\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)

\(\Leftrightarrow Max\left(xy\right)=2\)

Dấu "=" xảy ra khi

\(xy\in\left\{-1;1;-2;2\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài

Nguyễn Thanh Bình
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2023 lúc 20:38

A đạt giá trị lớn nhất khi \(4+x\) là số dương nhỏ nhất

Mà x là số nguyên \(\Rightarrow4+x\) là số nguyên dương nhỏ nhất

\(\Rightarrow4+x=1\Rightarrow x=-3\)

Nguyễn Thanh Bình
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2023 lúc 20:40

\(A=\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\)

A đạt giá trị nhỏ nhất khi \(\dfrac{10}{x-1}\) đạt giá trị nhỏ nhất

\(\Rightarrow x-1\) là số âm lớn nhất

Mà x nguyên \(\Rightarrow x-1\) là số nguyên âm lớn nhất

\(\Rightarrow x-1=-1\)

\(\Rightarrow x=0\)

Võ Ngọc Phương
Xem chi tiết
Akai Haruma
31 tháng 10 2023 lúc 13:24

Lời giải:

$M=\frac{2(\sqrt{x}-3)+7}{\sqrt{x}-3}=2+\frac{7}{\sqrt{x}-3}$

Để $M$ nguyên thì $\frac{7}{\sqrt{x}-3}$

Với $x$ nguyên không âm thì điều này xảy ra khi mà $\sqrt{x}-3$ là ước của $7$

$\Rightarrow \sqrt{x}-3\in\left\{\pm 1; \pm 7\right\}$

$\Rightarrow \sqrt{x}\in \left\{4; 2; 10; -4\right\}$

Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}\in \left\{4; 2; 10\right\}$

$\Rightarrow x\in \left\{16; 4; 100\right\}$ (tm)

_Banhdayyy_
Xem chi tiết
Akai Haruma
10 tháng 8 2021 lúc 10:38

Bài 5:

\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)

Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.

$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất

$\Rightarrow \sqrt{x}-2=-1$

$\Leftrightarrow x=1$ (thỏa mãn đkxđ)

 

Akai Haruma
10 tháng 8 2021 lúc 10:49

Bài 6:

$D(\sqrt{x}+1)=x-3$

$D^2(x+2\sqrt{x}+1)=(x-3)^2$

$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên 

Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên 

Với $D=0\Leftrightarrow x=3$ (tm)

Với $\sqrt{x}$ nguyên:

$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$

$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$

$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$

$\Leftrightarrow x=0; 1$

Vì $x\neq 1$ nên $x=0$.

Vậy $x=0; 3$

Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 14:20

Bài 6: 

Để D nguyên thì \(x-3⋮\sqrt{x}+1\)

\(\Leftrightarrow\sqrt{x}+1\in\left\{1;2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\)

hay \(x\in\left\{0;1\right\}\)

Hùng Chu
Xem chi tiết
Huỳnh Thị Thanh Ngân
21 tháng 6 2021 lúc 16:27

 \(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)

ĐKXĐ: \(x\ne1\)

\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)

\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)

\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)

\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)

\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)

 

 

 

Thỏ Nghịch Ngợm
Xem chi tiết
ひまわり(In my personal...
10 tháng 4 2021 lúc 21:22

\(a,\)Với \(x\ne-3,x\ne2\) ta có :

\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}-\dfrac{1}{x-2}\)

   \(=\dfrac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)

   \(=\dfrac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

   \(=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

   \(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

  \(=\dfrac{x-4}{x-2}\)

\(b,\) \(A=-3\Leftrightarrow\dfrac{x-4}{x-2}=-3\)

\(\Leftrightarrow x-4=-3\left(x-2\right)\)

\(\Leftrightarrow x-4+3x-6=0\)

\(\Leftrightarrow4x=10\Rightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)

Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 22:08

c) Để A đạt giá trị nguyên dương thì \(\left\{{}\begin{matrix}x-4⋮x-2\\x-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2⋮x-2\\x>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2\inƯ\left(-2\right)\\x>2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2\in\left\{1;-1;2;-2\right\}\\x>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{3;1;4;0\right\}\\x>2\end{matrix}\right.\Leftrightarrow x=4\)

Vậy: Để A là số nguyên dương thì x=4

Hippo
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 11:35

\(B+1=\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}+1=\dfrac{3\sqrt{x}+2}{\sqrt{x}+3}>0\Rightarrow B>-1\)

\(B-2=\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}-2=\dfrac{-7}{\sqrt{x}+3}< 0\Rightarrow B< 2\)

\(\Rightarrow\left[{}\begin{matrix}B=0\\B=1\end{matrix}\right.\)

- Với \(B=0\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\notin Z\) (loại)

- Với \(B=1\Rightarrow2\sqrt{x}-1=\sqrt{x}+3\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\)