CMR: \(\left(a^3+b^3+c^3\right)\ge a^3+b^3+c^3+24abc\) với a, b, c ≥ 0
Chứng minh rằng
a) \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\) với a, b > 0
b) \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\)với a, b, c > 0
c) \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)với \(a,b,c\ge0\)
*học ngu chỉ làm được câu b. lười quá nên làm tắt*
Biến đổi thành
4(a3+b3)-(a+b)3+4(a3+b3)-(b+c)3+4(c3+a3)-(c+a)3 >=0
xét 4(a3+b3)-(a+b)3 =(a+b)[4(a2-ab+b2)-(a+b)2]
=3(a+b)(a-b)2 >=0
tương tự với \(\hept{\begin{cases}4\left(b^3+c^3\right)-\left(b+c\right)^3\\4\left(c^3+a^2\right)-\left(a+c\right)^3\end{cases}}\)
=> đpcm
đẳng thức xảy ra khi a=b=c
Ta có : \(4\left(a^3+b^3\right)=4a^3+4b^3\)(1)
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^2\)(2)
Từ 1 và 2 \(< =>3a^3+3b^3\ge3a^2b+3ab^2\)
\(< =>a^3+b^3\ge a^2b+ab^2\)
\(< =>a+b\ge b+a\left(đpcm\right)\)
Ko chắc lắm vì t ms lớp 6 :((
CMR: \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\) với a, b, c > 0
Ta biến đổi: \(4\left(a^3+b^3\right)-\left(a+b\right)^3+4\left(b^3+c^3\right)-\left(b+c\right)^3+4\left(c^3+a^3\right)-\left(c+a\right)^3\ge0\)
Xét: \(4\left(a^3+b^3\right)-\left(a+b\right)^3=\left(a+b\right)\left[4\left(a^2-ab+b^2\right)-\left(a+b\right)^2\right]\)
\(=3\left(x+b\right)\left(a-b\right)^2\ge0\)
Tương tự với: \(4\left(b^3+c^3\right)-\left(b+c\right)^3\) và \(4\left(c^3+a^3\right)-\left(c+a\right)^3\)
Ta suy ra đpcm.
Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)
CMR: \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\) với a, b, c >0
cho các số thực a,b,c không âm .Chứng minh rằng :
\(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)
khai triển cái VT ra bạn:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
Vì đề là a;b;c không âm,ta áp dụng bđt AM-GM:
\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ac}\end{matrix}\right.\) \(\Leftrightarrow\left(a+b+c\right)^3\ge a^3+b^3+c^3+3.2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=VP\)
\("="\Leftrightarrow a=b=c\)
Ta có:\(\left(a+b+c\right)^3=\left(a+b\right)^3+c^3+3c\left(a+b\right)\left(a+b+c\right)\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
=\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Cần cm:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Lại có:\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
Nhân vế theo vế ta có đpcm
Dấu "=" xảy ra khi a=b=c
cmr \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\) với \(a,b,c>0\)
Lời giải:
Áp dụng BĐT AM-GM:
\(a^3+b^3+b^3\geq 3ab^2\)
\(a^3+a^3+b^3\geq 3a^2b\)
\(\Rightarrow 3(a^3+b^3)\geq 3ab(a+b)\)
\(\Leftrightarrow 4(a^3+b^3)\geq a^3+b^3+3ab(a+b)=(a+b)^3\)
Tương tự:
\(\left\{\begin{matrix} 4(b^3+c^3)\geq (b+c)^3\\ 4(c^3+a^3)\geq (c+a)^3\end{matrix}\right.\)
Cộng theo vế:
\(8(a^3+b^3+c^3)\geq (a+b)^3+(b+c)^3+(c+a)^3\)
Do đó ta có đpcm
Dấu bằng xảy ra khi a=b=c
CMR: \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3\)\(+\left(a+c\right)^3\) với a, b, c > 0
Xét : a^3+b^3-ab.(a+b)
= (a+b).(a^2-ab+b^2)-ab.(a+b)
= (a+b).(a^2-2ab+b^2)
= (a+b).(a-b)^2 >= 0 ( vì a;b > 0 )
=> a^3+b^3 >= ab.(a+b)
<=> (a+b)^3 = a^3+b^3+3ab.(a+b) < = a^3+b^3+3a^3+3b^3 = 4a^3+4b^3
Tương tự ........
=> (a+b)^3 + (b+c)^3 + (c+a)^3 < = 8a^3+8b^3+8c^3 = 8.(a^3+b^3+c^3)
=> ĐPCM
Tk mk nha
cmr \(\left(x-1\right)\left(x^3-1\right)\ge\)0 với mọi số thực x
từ đó cm \(a^4+b^4+c^4-\left(a^3+b^3+c^3\right)\ge\)0
với a,b,c là 3 số thực thỏa mãn a+b+c=3
\(\left(x-1\right)\left(x^3-1\right)=\left(x-1\right)^2\left(x^2+x+1\right)\ge0\) ( Đúng )
Chứng minh
c) \(\left(a+b+c\right)^3-\left(b+c-a\right)^3-\left(c+a-b\right)^3-\left(a+b-c\right)^3=24abc\)
Cho a,b,c>0 và a+b+c=3
CMR: \(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+c\right)\left(b+a\right)}+\frac{c^3}{\left(c+a\right)\left(c+b\right)}\ge\frac{3}{4}\)
Đặt BĐT cần c/m là A
Dự đoán đẳng thức xảy ra khi a = b = c
Áp dụng BĐT Cauchy cho 3 số không âm:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)
\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}.\frac{a+b}{8}.\frac{a+c}{8}}=\frac{3a}{4}\)
\(\frac{b^3}{\left(b+c\right)\left(b+a\right)}+\frac{b+c}{8}+\frac{b+a}{8}\)
\(\ge3\sqrt[3]{\frac{b^3}{\left(b+c\right)\left(b+a\right)}.\frac{b+c}{8}.\frac{b+a}{8}}=\frac{3b}{4}\)
\(\frac{c^3}{\left(c+a\right)\left(c+b\right)}+\frac{c+a}{8}+\frac{c+b}{8}\)
\(\ge3\sqrt[3]{\frac{c^3}{\left(c+a\right)\left(c+b\right)}.\frac{c+a}{8}.\frac{c+b}{8}}=\frac{3c}{4}\)
Cộng từng vế của các BĐT trên, ta được:
\(A+\frac{2\left(a+b+c\right)}{4}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow A\ge\frac{3}{4}\)
(Dấu "="\(\Leftrightarrow a=b=c\))