CMR A(n)=n^7-n chia hết cho 42 và mọi n thuộc N
CMR : A(n)=n7-n chia hết cho 42 và mọi n thuộc N
CMR : A(n)=n7-n chia hết cho 42 và mọi n thuộc N
Cmr n7-n chia hết cho 42 với mọi n thuộc N
CMR: A= 7n + 3n-1 chia hết cho 9 (với mọi n thuộc N)
CMR: B= 4n + 15n-1 chia hết cho 9 (với mọi n thuộc N*)
CMR với mọi n thuộc N
a, n+2.n+7 chia hết cho 2
b, n(n+1).(n+2) chia hết cho 2 và 3
c, n(n+1).(2n+1) chia hết cho 2 và 3
1 CMR
a) (n+20152016)+(n+20152016) chia hết cho 2 với mọi n thuộc N
b) n2+5n+7 không chia hết cho 2 với mọi n thuộc N
c)n(n+1)+1 không chia hết cho 5 với mọi n thuộc N
d)n2+n+2 không chia hết cho 15 với mọi n thuộc N
e)n2+n+2 không chia hết cho 3 với mọi n thuộc N
f)n2+n+1 không chia hết cho 5 với mọi n thuộc N
2 CMR
a)n2+11n+39 không chia hết cho 49 với mioj n thuộc N
b)n2-n+10 không chia hết cho 169 với mọi n thuộc N
c)n2+3n+5 không chia hết cho 121 với mọi n thuộc N
d)4n2+8n-6 không chia hết cho 25 với mọi n thuộc N
e)n2-5n-49 không chia hết cho 169 với mọi n thuộc N
CMR
a) (5n + 7) x (4n + 6) chia hết cho 2 với mọi n thuộc N
b) (8n + 1) x (6n + 5) chia hết cho 2 với mọi n thuộc N
Bài 1: cmr 3^105 +4^105 chia hết cho 13
Bài 2 : cmr 2^70 +3^70 chia hết cho 13
Bài 3 : cmr
a)( 6^2n+1) + (5^n) +2 chia hết cho 31 với mọi n thuộc N*
b) (2^2^2n+1) + 3 chia hết cho 7 với mọi n thuộc N
Bài 5 : tìm dư trong phép chia
a) 1532 -1 cho 9
b)5^70 + 7^50 cho 12
CMR:
\(n^5\)-n chia hết cho 30 với mọi số n thuộc N
\(a^{^{ }7}\)-a chia hết cho 7
a: \(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\cdot n\cdot\left(n+1\right)\left(n^2+1\right)\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên \(\left(n-1\right)\left(n+1\right)\cdot n⋮3!\)
=>\(A⋮6\)(1)
Vì 5 là số nguyên tố nên \(n^5-n⋮5\)(Định lí Fermat nhỏ)
hay \(A⋮5\)(2)
Từ (1)và (2) suy ra \(A⋮30\)
b: Vì 7 là số nguyên tố nên \(a^7-a⋮7\)(Định lí Fermat nhỏ)