Giải phương trình:
a.(ax-1)=x.(2a-2)-1 (a là tham số)
B1. cho phương trình (x-1)^3-(a^2-a+7)(x-1)-3(a^2-a-2)=0
a, tìm các giá trị của a để một trong các nghiệm là 2
b, giải phương trình với các giá trị đó của a
B2.giải pương trình với tham số a
a, 4ax^3-12x^2-ax+3=0
b, 2a^2x^3+5a^2x^2-8x=20
Bài 2:
a: \(\Leftrightarrow4x^2\left(ax-3\right)-\left(ax-3\right)=0\)
\(\Leftrightarrow\left(ax-3\right)\left(2x-1\right)\left(2x+1\right)=0\)
Trường hợp 1: a=0
=>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
Trường hợp 2: a<>0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\\x=\dfrac{3}{a}\end{matrix}\right.\)
b: \(\Leftrightarrow a^2x^2\left(2x+5\right)-4\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(a^2x^2-4\right)=0\)
Trường hợp 1: a=0
Phương trình sẽ là 2x+5=0
hay x=-5/2
Trường hợp 2: a<>0
Phương trình sẽ là \(\left(2x+5\right)\left[\left(ax\right)^2-4\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=-\dfrac{2}{a}\\x=\dfrac{2}{a}\end{matrix}\right.\)
giải và biện luaanl phương trình sau với a là tham số:
a, a(ax-1)=x-1
b, \(\frac{x-a}{a+1}\)+\(\frac{x-1}{a-1}\)=\(\frac{2a}{1-a^2}\)
a, Ta có: \(a\left(ax-1\right)=x-1\)
\(\Leftrightarrow a^2x-a=x-1\)
\(\Leftrightarrow a^2x-x=a-1\)
\(\Leftrightarrow x\left(a-1\right)\left(a+1\right)=a-1\)
Với \(a\ne\pm1\)=> Pt có nghiệm duy nhất \(x=\frac{a-1}{a+1}\)
Với \(a=1\)=> Pt có nghiệm đúng với mọi x
Với \(a=-1\)=> Pt vô nghiệm
giải và biện luận phương trình với a là tham số:
a (ax-1) = x-1
Cho phương trình \(\left(x^2+ax+1\right)^2+a\left(x^2+ax+1\right)+1=0\) với a là tham số. Khi phương trình có nghiệm thực duy nhất, cmr a > 2
Sai đề.
Tại a=3 thay vào pt ban đầu \(\Rightarrow\left(x^2+3x+1\right)^2+3\left(x^2+3x+1\right)+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x+1=\dfrac{-3+\sqrt{5}}{2}\\x^2+3x+1=\dfrac{-3-\sqrt{5}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x+\dfrac{5-\sqrt{5}}{2}=0\left(1\right)\\x^2+3x+\dfrac{5+\sqrt{5}}{2}=0\left(2\right)\end{matrix}\right.\)
Bấm máy thấy pt (1) có hai nghiệm, pt (2) vô nghiệm => Tại a=3 thì pt ban đầu có 2 nghiệm (Trái với điều phải cm)
Giải và biện luận bất phương trình:
(a-2)x lớn hơn hoặc bằng (2a-1)x-3 (a là tham số)
giải và biện luận các phương trình ( a và k là những tham số ) : a) a/x-2 +1/x-2a =1 ; b) 3x+k/x-3 = x-k/x+3
Cho phương trình ax2 + 3(a + 1)x + 2a + 4= 0 ( a là tham số ). Tìm a để phương trình đã cho co hai nghiệm phân biệt x1; x2 thỏa mãn
x12 + x22 = 4
Đen ta =9(a+1)^2 - 4.a.(2a+4) (*) .Để phương trình có 2 nghiệm phân biệt thì đen ta >0 →(*) luôn đúng→x1=...;x2=... rồi thay vào biểu thức
phải ko nhể,có giống cách bạn làm ko ?
Cho phương trình: \(\frac{3a+1}{a+x}-\frac{a-1}{a-x}=\frac{2a\left(a^2-1\right)}{x^2-a^2}\)( với a là tham số )
a, Giải phương rình trên.
b, Tìm các giá trị nguyên dương của a để phương trình có nghiệm x là số nguyên tố
Cho hệ phương trình :\(\hept{\begin{cases}ax-y=2a\\x-ay=3+a\end{cases}}\)(a là tham số )
a) giải hệ phương trình theo a. Áp dụng tìm nghiệm khi a =\(1-\sqrt{2}\)
b) Tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn \(x+y=\frac{a^2-5}{a-1}\)
c) Tìm a \(\in\)Z để hệ phương trình có nghiệm duy nhất (x;y) nguyên . Tìm giá trị các nghiệm nguyên đó