Ôn tập cuối năm môn Đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kinder

Cho phương trình \(\left(x^2+ax+1\right)^2+a\left(x^2+ax+1\right)+1=0\) với a là tham số. Khi phương trình có nghiệm thực duy nhất, cmr a > 2

Lê Thị Thục Hiền
11 tháng 6 2021 lúc 15:20

Sai đề.

Tại a=3 thay vào pt ban đầu \(\Rightarrow\left(x^2+3x+1\right)^2+3\left(x^2+3x+1\right)+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x+1=\dfrac{-3+\sqrt{5}}{2}\\x^2+3x+1=\dfrac{-3-\sqrt{5}}{2}\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x+\dfrac{5-\sqrt{5}}{2}=0\left(1\right)\\x^2+3x+\dfrac{5+\sqrt{5}}{2}=0\left(2\right)\end{matrix}\right.\)

Bấm máy thấy pt (1) có hai nghiệm, pt (2) vô nghiệm => Tại a=3 thì pt ban đầu có 2 nghiệm (Trái với điều phải cm)


Các câu hỏi tương tự
Quách Phương
Xem chi tiết
Kinder
Xem chi tiết
Kinder
Xem chi tiết
dia fic
Xem chi tiết
btkho
Xem chi tiết
Kinder
Xem chi tiết
Kinder
Xem chi tiết
Kinder
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
Xem chi tiết