Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Có bao nhiêu giá trị nguyên m để phương trình \(x^2-4\sqrt{x^2+1}-\left(m-1\right)=0\) có 4 nghiệm phân biệt
Để phương trình \(\left|x+3\right|\left(x-2\right)+m-1=0\) có đúng một nghiệm, các giá trị của m là?
Hệ bất phương trình \(\left\{{}\begin{matrix}x^2-5x+4\le0\\x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\end{matrix}\right.\) có tập nghiệm biểu diễn trên trục số có độ dài bằng 1, với giá trị của m bằng ?
Câu 1: Giải và biện luận bất phương trình \(m^2x+m\ge2-4x\)
Câu 2: Tìm giá trị thực của tham số m để bất phương trình \(m\left(2x-1\right)\ge2x-1\) có tập nghiệm là \([1;+\infty)\)
Tìm m để phương trình sau có 3 nghiệm phân biệt:
\(\left|x^2-3x-3+m\right|=x+1\)
Cho phương trình \(\left(x^2+ax+1\right)^2+a\left(x^2+ax+1\right)+1=0\) với a là tham số. Khi phương trình có nghiệm thực duy nhất, cmr a > 2
Cho hàm số \(y=f\left(x\right)=x^2-4x+3\). Tìm m nguyên sao cho \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) có 6 nghiệm phân biệt
a) Giả sử phương trình bậc 2: \(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\) có 2 nghiệm \(x_1,x_2\)thỏa mãn \(x_1+x_2\le4\). Tìm Max, Min của \(P=x^3_1+x^3_2+x_1x_2\left(3x_1+3x_2+8\right)\)
b) Cho hàm \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left|x-2\right|}\). Tìm tất cả các giá trị của \(m\) để \(f\left(x\right)< 0,\forall x\in\left[0;1\right]\)
Tìm m để hệ phương trình có nghiệm
\(\left\{{}\begin{matrix}x^2-3x-4< 0\\\left(m-1\right)x-2\ge0\end{matrix}\right.\)